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Abstract—We obtain the Carnahan–Starling equation for a system of hard spheres using the Euler method of
accelerated series convergence. For this purpose, the virial series is transformed into a new series with coeffi-
cients that differ slightly from each other, even when considering the eleven currently known virial coeffi-
cients. The method of accelerated convergence was applied to this series; it allowed us to obtain the Carna-
han–Starling equation. In this work, this equation is derived for the first time using the method of accelerated
convergence. It is generalized to accurately reproduce all of the known virial coefficients and the asymptotic
behavior of the free energy at high densities. This also makes it possible to describe a metastable region with
a high degree of accuracy and to obtain the equation of state for a homogeneous system of hard spheres with
the accuracy of a computer experiment.
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INTRODUCTION
The Carnahan–Starling equation for the equation

of state of a system of hard spheres [1] was obtained
nearly 50 years ago; it resolved the problem of the
description of dense liquids. This equation of state
made it possible to account for repulsive forces of par-
ticle interactions with high accuracy, whereas the
attraction part of the interaction potential could be
calculated rather simply by that time.

The passage of time has shown [2, 3] how success-
ful the semiempirical approximation using the six
available virial coefficients has become [4] (in fairness
it should be noted that the seventh virial coefficient
was also well known [5] to the authors of [1]). Even
with the currently known eleven virial coefficients,
this approximation has not lost its relevance. Among
simple analytical equations of state the Carnahan–
Starling equation is still the most accurate one, with
the exception of the metastable region.

In [6], a method was proposed based on using the
structure of the Carnahan–Starling equation which
allows one to precisely reproduce all the known virial
coefficients. It was generalized to molecular systems
with positively defined interaction potential between
the particles. In this case, unlike obtaining the Carna-
han–Starling equation [1], the expression for free
energy was used as a starting point instead of the ther-
mal equation of state. However, an open issue
remained relating to consistently obtaining the Carna-
han–Starling equation. This issue not only has a gen-

eral theoretical meaning, but also leads to new numer-
ical results.

To solve the problems of statistical thermodynam-
ics one has to use a perturbation theory series. In this
case, the calculation of each next term of the series
faces significant mathematical difficulties. Moreover,
the obtained series converge very slowly for many of
the most interesting regions of the phase diagram of a
substance.

For this reason, the problem of convergence of the
series arises, namely their transformation into another
series with the same sum as the original, but with faster
convergence [7–12]. Despite the great advances in
calculating virial coefficients, their number is quite
limited; this determines the relevance of using the
methods of accelerated convergence.

Currently, the number of known virial coefficients
for a system of hard spheres equals eleven and is eight
for systems with the Lennard–Jones interaction
potential; in the last 50 years the accuracy of the cal-
culation of these virial coefficients has increased sig-
nificantly [13–36]. For more complex interaction
potentials the number of the known virial coefficients
is still lower. In this regard, the use of methods of
accelerated series convergence of perturbation theory
is absolutely essential when using the virial series in
more sophisticated variants of perturbation theory
[37] to describe the state of matter at high densities.

The existing methods of the accelerated conver-
gence of the perturbation theory series in statistical
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thermodynamics can be divided into three groups.
These are primarily mathematical methods of acceler-
ated convergence. They are based on the purely math-
ematical properties of the series, which are either
known originally or their presence is assumed. Among
the mathematical methods for accelerated conver-
gence one can mention the Kummer and Euler meth-
ods, the method of Pade approximants, and many
others [8].

The essence of the physical techniques of acceler-
ated convergence lies in the fact that on the basis of
physical considerations we turn from the functions
with slowly converging perturbation series to the func-
tions for which the perturbation series converge faster
[12]. The main task of statistical thermodynamics is
reduced to the calculation of the statistical integral.
For real interaction potentials its properties help to
identify those functions for which the perturbation
series converge faster.

To accelerate the convergence of a perturbation
series on the basis of physical considerations one
should also take the dimensionality of space into
account. It is necessary to use the representation of the
number of nearest neighbors, the behavior of the sys-
tem at large densities, including the metastable region,
and the region of the ordered phase, as well as the fea-
tures in the behavior of various thermodynamic func-
tions [3, 38–50]. An important role here is played by
the choice of the main approximation. A sufficiently
exact equation of the state of the system of hard
spheres is necessary in the case of non-equilibrium
processes for calculating transport coefficients for
dense gases within the Boltzmann–Enskog theory
[51–54].

The combined methods of the accelerated conver-
gence of the perturbation series are more general.
Within this approach, a transition to the functions for
which the perturbation series converges quickly is per-
formed based on physical considerations and mathe-
matical convergence acceleration techniques are then
applied to it [9].

In this paper, obtaining the Carnahan–Starling
equation is reduced to an application of Euler’s
method for accelerated convergence of a series
obtained on the basis of a series in the powers of the
free-energy density. Such a series has the property that
its coefficients slightly differ from each other. Roughly
speaking, this series behaves like a geometric progres-
sion. A single application of the Euler method [7, 8] to
this series, taking only the second virial coefficient
into account (and using information about the known
virial coefficients) allows one to obtain the Carna-
han–Starling equation.

With subsequent allowance for all of the known
virial coefficients one can find the equation of state
that describes a stable phase with the accuracy of a
computer experiment [3]. The metastable phase is also
described well by this equation. To improve the agree-

ment between theory and experiment in the metasta-
ble region, the asymptotic behavior of the expression
for the free energy of the system was taken into account
[6]. As a result, full agreement between the theoretical
data and those of the computer experiment was
obtained.

THE VIRIAL EXPANSION 
FOR A SYSTEM OF HARD SPHERES

Currently, eleven virial coefficients for the system
of hard-spheres are known, which were found numer-
ically [2]. The first four of these are calculated in the
exact form. This makes it possible to obtain the equa-
tion of state of the system with a high degree of accu-
racy at low and intermediate densities. In the general
case, the series expansion of the compressibility has
the form

(1)

Here, V is the volume of the system, N is the number
of particles in it, T is the absolute temperature, p is the
pressure, k is the Boltzmann constant, bi are the virial
coefficients; and ρ = N/V is the density.

We proceed in expression (1) to the dimensionless
variables

(2)

In expansion (2) for compressibility y = πσ3ρ/6,
= bi(6/πσ3)i – 1, and σ is the diameter of hard

spheres.
For further treatment, it is convenient to use the

following expression for the free energy of a system of
hard spheres:

(3)
In this expression F0 is the free energy of an ideal

gas,

(4)

Figure 1 shows the dependence of the coefficient

ϕi =  of series (4) on the virial coefficient number

i for the eleven known virial coefficients. This depen-
dence can be represented as a linear one with a good
degree of accuracy.

Hence, it is easy to see that for the function
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the coefficients  are close to 1 (see

Fig. 2). It is worthwhile to draw attention to a slight
decrease of coefficients χi starting from the number i =
5. In essence, two basic features in the behavior of the
virial series of a system of hard spheres are exhibited.
The first is that at i ≤ 5 the coefficients χi exceed or
equal 1, whereas all known coefficients are less than 1
at i > 5. The success of the Carnahan–Starling equa-
tion is due to the fortuitous behavior of the coefficients
χi in an interval close to 1 [1, 6]. The second feature is
that, since the number of coefficients χi that are less
than 1 is considerable, and integrally the Carnahan–
Starling equation describes compressibility well, the
coefficients χi must exceed 1 starting from a certain
number. This feature is caused by the behavior of the
statistical integral at high densities. We will be able to
use it for a quantitative description of the equation of
state of hard spheres at high densities, including the
metastable region [12].

2. THE METHOD OF THE ACCELERATED 
CONVERGENCE OF THE FUNCTION χ

Since the series coefficients for the function χ are
close to 1, the Euler method of accelerated conver-
gence can be applied to this series [7]. As a result, for
χ in (5) we obtain

(6)

where

(7)

In deriving (6) we took the fact into account that
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Having calculated coefficients ci (i ≥ 4) according
to (7), we obtain the function χ from (6). This allows
us to obtain the function ϕ from (5)

(8)

where

(9)

As a result, the free energy (3) of the system,
according to (8) and (9), is completely determined.

Using (3) with allowance for (8) we find the expres-
sion for compressibility

(10)

where

(11)

To obtain the Carnahan–Starling equation, we put
ci = 0 (i ≥ 4). This approximation is satisfied with a
good degree of accuracy for all currently known virial
coefficients.

In this case one obtains from (6)

(12)

Using (12) and (8) the function ϕ takes the form
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Fig. 1. The coefficients of expansion of the function ϕ
depending on their numbers.
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depending on their numbers.
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According to (10), (11), and (13), the expression for
compressibility is given by

(14)

Expression (14) is the Carnahan–Starling equa-
tion.

In the general case ci ≠ 0 for i ≥ 4, in order to deter-
mine the compressibility we should use (10), restrict-
ing the infinite series by a finite one whose terms are
determined by the known virial coefficients.

Expression (10) for compressibility yields results
that are in agreement with the data of computer exper-
iment in the limits of their accuracy in the stable
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region. The same agreement can be obtained in the
metastable region with allowance for the logarithmic
asymptotics of the free-energy expression at large den-
sities [6]. For this purpose, the function ϕ in expres-
sion (3) for the free energy is written in the form

(15)

where  , and m(y) is a new function that has
the meaning of a half number of nearest neighbors [6].

To determine the form of function m(y) we take the
fact into account that in the region of the stable phase
the function ϕ can be calculated within the generalized
Carnahan–Starling approximation, according to (8).
With allowance for this, it is natural to represent m(y)
in the form

(16)

where we seek the function ψ(y) in the form

(17)
The coefficients pi in (17) are found from the condi-
tion of asymptotic coincidence of the function ϕ cal-
culated from (15) with allowance for (16) and (17), and
the function calculated by (8). The number of terms in
series (17) is restricted by the condition that the func-
tion m(y) monotonously increases, since the effective
number of nearest neighbors increases with increasing
density.

Expressions (3) and (15)–(17) completely deter-
mine the free energy in the given approximation.
Using (3) and (10) the expression for compressibility
takes the form
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Figure 3 shows the dependences of the compress-
ibility on the density in the metastable region of a sys-
tem of hard spheres calculated by the Carnahan–Star-
ling equation (14) (dotted line) and equation (18)
(solid line) with allowance for eleven virial coeffi-
cients. The points denote the data of the computer
experiment [3], x = 6y/π. One can clearly note the
improving agreement of theoretical data calculated
from (18) with those of the computer simulation as
compared to the Carnahan–Starling equation (14).

For the stable phase, equations (10) and (18) lead to
results that differ in the limits of accuracy of the com-
puter experiment. In this case one can use a simpler
though less general expression (10).

CONCLUSIONS

In this work, for the first time, the Carnahan–Star-
ling equation of state of a system of hard spheres has
been obtained based on the use of Euler’s method of
accelerated series convergence. This method can be
generalized to accurate calculations with an arbitrary
number of precisely known virial coefficients. As a
result, the obtained expression (10) for compressibility
reproduces the data of computer simulation within its
accuracy.

For the metastable region, a misalignment
becomes noticeable with increasing density in the
two-phase region, despite relatively good coincidence.
The reason for this can be seen already when analyzing
the behavior of the first eleven known virial coeffi-

Fig. 3. The dependence of the compressibility on the den-
sity in the metastable region of the system of hard spheres
for Carnahan–Starling equation (14) (dotted line), and
calculated by Eq. (18) with allowance for eleven virial coef-
ficients. The points show the data of the computer experi-
ment.
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cients compared with the same coefficients found in
the main Carnahan–Starling approximation, and tak-
ing the behavior of the statistical integral at high den-
sities into account.

The Carnahan–Starling equation was obtained
based on a successful choice of the interpolation for-
mula for virial coefficients, which describes the virial
coefficients well. This has led to the success of this
approach. Numerous attempts have been made to gen-
eralize the Carnahan–Starling approximation [38,
55]. However, this equation does not describe the
asymptotic behavior of the statistical integral at high
densities. According to (16), in this approximation,
the number of nearest neighbors begins to diminish
starting from a certain density and reaches physically
meaningless values. Therefore, to obtain consistent
results one has to restrict the number of terms of the
series that must be taken into account. The character
of the dependence of the effective number of nearest
neighbors serves as a physical criterion.

As a result, we obtained formula (18) for com-
pressibility, which describes both the stable and
metastable areas of the phase diagram well. Thus, the
results make it possible to claim that this method
allows one to obtain the generalized Carnahan–Star-
ling equation (18), correctly reproduces all of the
known virial coefficients, and describes the phase dia-
gram of a homogeneous system of hard spheres within
the accuracy of a modern computer experiment.

This approach is applicable for positively defined
potentials of a general form when quantum effects are
taken into account [56]. It can be generalized to the
systems in external fields and mixtures of different sys-
tems.
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