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Abstract—This work aims to describe the method of analytical calculation of an orthonormalized basis of
states of the Josephson flux quantum bits (qubits) using a two-level approximation under the condition that
the potential energy of the system is a combination of two potential wells separated by a tunnel barrier. For
illustration, the calculation results in the case of the well-known three- and four-junction flux qubits, as well
as promising silent qubits, are presented.
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INTRODUCTION
The development of modern solid-state electronics

follows the path of constant reduction of the charac-
teristic size of the working element of the logical cell in
information processing. The analysis of the dynamics
of quantum systems, including the spins of single elec-
trons in solids [1], as well as atomic [2] and supercon-
ducting [3] quantum bits (qubits), is increasingly rele-
vant. Superconducting qubits with micrometer
dimensions [4] that allow the effective control of sep-
arate “artificial atoms” are considered in this article.

During modeling and optimization of any charac-
teristics of quantum mechanical systems, an essential
part of the computational power is spent on searching
for the spectrum and matrix elements of the Hamilto-
nian of the quantum system. In addition, a detailed
study of the dynamics of superconducting qubits can-
not be imagined without an analysis of the loss of
coherence of qubit states. In particular, the coherence
loss time, normalized to the duration of the character-
istic processes in the system, determines the maxi-
mum number of the logical operations produced by a
logical element [5]. There are different ways of
describing the processes of coherence loss in qubit sys-
tems [6, 7], but in the simplest case, the dissipative
dynamics of the two-level superconducting Joseph-
son’s qubit in the presence of control magnetic f lux is
described by the Bloch equation for the density matrix
of the system [8, 9]. In this equation the Hamiltonian
is defined in the form of the matrix

, , i, j = 1,2

in an orthonormalized basis of the wave functions
 and , with x1, …, xn being the

set of generalized coordinates of the system. The main
part of this paper aims specifically at calculating the
matrix elements of the Hamiltonian for various qubit
systems. The proposed method for a rapid search for
the basis wave functions and the Hamiltonian matrix
of a two-level system will provide a dramatic accelera-
tion of calculation of any characteristics of supercon-
ducting f lux qubits on the basis of the Bloch equation.
This approach to the calculation of the matrix ele-
ments of the Hamiltonian will be used to analyze
three- and four-junction flux qubits (Figs. 1a, 1b), as
well as silent qubits (Fig. 1c).

In addition, we note that the Josephson qubit con-
trol field can be defined in either an oscillatory or a
unipolar form. The first method has been well studied
[10]. For unipolar fields, there is reason to believe on
the basis of the simplified models [11–13] that they
can also be used for optimal control of the qubit sys-
tems, including the picosecond time scale. Therefore,
in this paper, in analyzing the dynamics of qubit sys-
tems, a unipolar control field will be used. In addition,
we will attempt to show that these results can be used
to study the effect of ultrashort unipolar pulses of the
control field on the qubit.
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1. METHOD FOR THE CALCULATION 
OF THE HAMILTONIAN MATRIX 

OF THE JOSEPHSON QUBIT
It is well known [14] that a Josephson qubit can be

described well under certain conditions by a two-level
model system in which the wave function has the form

(1)

In this case, the normalization condition is fulfilled:
|c1(t)|2 + |c2(t)|2 = 1. The possibility of using a two-level
model significantly simplifies the analysis of the func-
tioning of the qubit [15, 16], allowing us to immedi-
ately write the expression for the eigenvalues of the
Hamiltonian of a two-level system:

(2)

ψ = φ + φ1 1 1 1 2 2 1( ... , ) ( ) ( ... , ) ( ) ( ... , ).n n nx x t c t x x t c t x x t
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The application of (2) for analyzing the dynamics
of qubits on the basis of the quantum-mechanical

equation  provides

rather high accuracy if the system changes occur in a
quasi-stationary mode:

(3)

In the process of calculation of the qubit dynamics,
the fulfillment of this condition was controlled by the
simplest numerical assessment of the time derivatives
of the eigenvalues of energy (Ξ(t) ≤ 0.04).

Determination of the spin basis and general
approaches to express the Lagrange function in the
context of the quantum-mechanical analogy for flux
qubits are described in the Appendix. We formulate
here the most important simplification of the proposed
method: the potential energy profile  with
two minima (a double-well potential) allows one to
use the approximation by the potential energy profile
of the linear harmonic oscillator (Fig. 1d). The
approximating functions have the form

(4)

The basis function  of the spin basis
corresponds to the left minimum (l), the basis func-
tion  corresponds to the right minimum
(r). The first stage of the described method is to find
expressions for generalized masses . We
emphasize that the final result of the paper will be
obtained when considering the qubits described by the
potential energy  without any simplifica-
tion of this function. However, before this, one should
carry out an auxiliary consideration to determine the
wave functions of the spin basis of the system. In this
treatment, we temporarily ignore the coordinate
domains (x1, …, xn), which correspond to the potential
barrier between the minima  and/or con-
tain points far from each minimum. The potential
energy function itself is temporarily replaced by one of
functions (4) with index l or r, depending on what
minimum is considered. After having found the wave
functions, all further analysis will be valid for all pos-
sible values of coordinates x1–xn for the exact (not
approximate) form of the potential energy. The very
problem of finding the spin basis reduces to the well-
known problem of the linear harmonic oscillator [17]
(detailed calculations are given in the Appendix).

At the second stage, we represent the potential
energy in a certain domain in the form of (4) and
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Fig. 1. A schematic view of a three-junction f lux qubit (a);
four-junction f lux qubit (b); silent qubit (c). The crosses
on the schemes denote the Josephson junctions with criti-
cal currents IC; αIC and capacitances C; αC; ϕ1, ϕ2, ϕ3, ϕ4
are the phases of the Josephson junctions; ΦZ, ΦX, Φe are
the magnetic f luxes. (d) A typical graph of the potential
energy of a f lux qubit and its approximations with the
potential functions of the harmonic oscillator. As an exam-
ple, the section of the potential energy of the 3JJ qubit by
the plane ϕ = 0 is shown near the point of degeneracy at
fz = 0.0175, α = 0.8, EJ = 5 × 10–15 erg, as well as the
approximating functions Ul(θ, ϕ), Ur(θ, ϕ) (dash curves)
and the wave functions of the stationary states in these
potentials, ψl(θ, ϕ) and ψr(θ, ϕ) (dot curves).
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determine the expressions for characteristic frequen-

cies , , “sizes” ,  and dimensionless

coordinates , . As a result, the functions of spin

basis normalized to unity will also be determined. To
perform the orthogonalization procedure, we write the
basis functions in the form

(5)

Here, c = . All calculations below

were first performed in the basis {ψl, ψr} and further
they were recalculated into basis (5).

The third stage of the implementation of the pro-
posed method is the same for all qubits under consid-

eration. This reduces to the calculation of the terms of
the Hamiltonian matrix elements that correspond to
the kinetic energy. The kinetic energy operator has the
same form for each of the two minima:

(6)

For matrix elements H11, H22 and H12 = H21, the terms
that correspond to the kinetic energy are calculated by
the formulas obtained in the Appendix:

(7)

For correct calculation, we should pass to basis (5):

(8)

The fourth stage of the calculation of the Hamilto-

nian matrix reduces to the integration of the product

of a pair of basis functions by the potential energy of

the system, which is now taken not in an approximate

form of the linear harmonic oscillator, but in its origi-

nal form for this system. The auxiliary expressions that

are necessary for the integration of the potential

energy are given in the Appendix.

Thus, we summarize the steps for calculating the

Hamiltonian matrix of a qubit system with a potential

energy that has two minima.

The Lagrange function of the system is written

using the expressions for the functions , ..., .

The potential energy of the system near the points

of minima is represented in form (4), and expressions

for the characteristic frequencies, sizes and dimen-

sionless coordinates must be obtained.

Formulas (7) and (8) must be used to calculate the

kinetic energy term.

For each pair of the basis wave functions {ψl, ψr}

the potential energy integral of the system is calculated

between the brackets of a pair of these basis functions

and then one should pass to basis (5) using formulas

(8) and replacing T by V.

Now, let us consider specific qubit systems.

2. A THREE- OR FOUR-JUNCTION FLUX 
QUBIT

We consider a three-junction flux qubit (abbrevi-
ated as 3JJ qubit) [3, 18], which is a well-known sys-
tem on the basis of Josephson’s junctions [19]. It is
described by two variables, θ and ϕ (n = 2). The 3JJ
qubit (Fig. 1a) consists of Josephson’s junctions 1,
2, 3, included in a superconducting circuit with the
magnetic f lux Φz penetrating it. Junctions 1 and 2 are

the same and have a definite area, critical current IC,

capacitance C, and the Josephson energy

 , whereas for junction 3 these parame-

ters are less by α =  times. For a
four-junction (4JJ) qubit shown in Fig. 1b, the role of
the Josephson junction no. 3 is played by a two-junc-
tion interferometer with the penetrating external mag-
netic f lux Φx. It is possible to control the parameter α
in the 4JJ qubit via the external magnetic f lux Φx,

whereas parameter α is a constant in the 3JJ qubit. In
particular, if both junctions of a small superconduct-
ing circuit of the system in Fig. 1b are identical and
have parameters IC/2, C/2, and EJ/2, then α =

 . Since the condition α > 1/2 must be
satisfied for the double-well potential to exist, one
should also provide the validity of the condition

. For other characteristics,
the dynamics of these devices is analogous, since a
two-contact interferometer is equivalent to an isolated

Josephson junction with the phase ϕeff = .
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In this Section all phases are counted clockwise both
in large (Φz) and small (Φx) superconducting circuits.

Below, all results obtained for the 3JJ qubit will take
place for the 4JJ qubit, although this is not specifically
stipulated for brevity. For the 4JJ qubit, one should
also use two variables, namely θ ≡ x1 and ϕ ≡ x2, n = 2.

When comparing 3JJ and 4JJ qubits, we must take the
formulas into account for α and ϕeff (ϕeff is the effective

phase of a small superconducting ring of the 4JJ qubit;
hereinafter, it is designated as ϕ3 if the 4JJ qubit is

meant).

Below we will assume that the inductance of all
superconducting circuits is sufficiently small: LIC ≪
Φ0, Φ0 =  is the quantum of magnetic f lux. Only in

this case the magnetic f lux that penetrates the circuits
approximately equals the externally given magnetic
flux Φz (or Φx). For brevity, we will use the designation

fz = Φz/Φ0 – 1/2; the point fz = 0 is called the point of

degeneracy and corresponds to the case when the
potential energy shown in Fig. 1d has a symmetric

form. At |fz| > ,  ~0.1 one minimum of the

potential energy of the qubit disappears. We will con-
sider only those values of fz that do not strongly differ

from zero.

As known from the Josephson effect theory [20,
21], the current through the junction is related to the
phase ϕ. The assessments of the critical current IC and

energy EJ are: ~400 nA and ~ 10–15 erg, respectively

[4]. When the junctions in a superconducting ring are
connected in series, their phases are added and the
total Josephson’s phase is rigidly connected with the
magnetic f lux penetrating the ring [22]. Due to this
one obtains

(9)

By performing the transformations (see Appendix
for more details) with allowance for the formulas and

designations , ,

, , , we obtain

the quantities , , and . The potential part

of the Hamiltonian takes the form

(10)

The kinetic energy is calculated by formulas (7) and
(8). Parameters (10) should be also substituted into (8)
with replacing T by V. We now compare our results to
the results of other authors. It should be emphasized
that to date, even the distance between the basis levels
of the qubit was not found theoretically with sufficient
accuracy. When compared with the experiment, the
“energy gap” E2 – E1 is usually treated as an adjustable

parameter [3]. Unlike this, we expressed this quantity
analytically through the Hamiltonian matrix. Its ade-
quacy can be verified by comparing it with the results
of numerical simulation. Analytical calculations are
reduced to the use of the above formulas obtained in
the Appendix. The numerical calculations were based
on the direct calculation of the integrals for the matrix

elements of the kinetic and potential energy ,

i, j = 1,2 using the two-dimensional method of rectan-
gles.

The energies of the stationary states of a three-
junction flux qubit depending on the parameters  fz
and α are shown in Figs. 2a and  2b. Figure 2a demon-
strates complete correspondence to the literature data
[3, 23, 24] shown in Fig. 2c, while Fig. 2b is in partial
agreement with the data [23] (Fig. 2d) for all values of
α except the region near α ≈ 0.5. This is due to the fact

that, unlike our consideration, the calculations in [23]
were carried out with allowance for the presence of no
less than four energy levels of f lux qubit. The analysis
of the simplest logical operations on such a system is
presented in the Appendix.

3. SILENT QUBITS

A silent qubit is a two-junction interferometer con-
trolled by the magnetic f lux. It contains two Joseph-
son’s junctions with the non-trivial current-phase
dependence (CFD)

(11)

These qubits are treated as a promising modifica-
tion of the f lux qubits regarding the possibility of min-
imizing the intensity of uncontrolled interaction with
the environment [25–30]. In addition, the standard
working value of the magnetic f lux for silent qubits is

|ϕe| ≪ 1, ϕe ≡ , in particular ϕe = 0. This is

much more convenient than in the case of the 3JJ
qubits (Fig. 2a), when the external f lux should be
equal to Φ0/2, and the smallest detuning from this

value changes the distance between the energy levels
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by an order of magnitude. Below, we will assume that
the inductance of the interferometer is negligible
(|2πLA/Φ0| ≪ 1).

For a silent qubit, in the formulas of Section 1
we must use the value n = 1 and a single variable
θ ≡ x1 (this variable has the different meaning com-

pared to the variable θ for the 3JJ and 4JJ qubits).
Let the directions of counting of the Josephson
phases for junctions 1 and 2 be chosen so that ϕe =

ϕ1 – ϕ2; therefore ϕ2 = ϕ1 – ϕe, and the potential

energy is given by the coordinate θ ≡ ϕ1, O ≡
. Then, assuming that the total

current through the junction is (Isum)j =

, j = 1,2, using the first Kirchhoff

law (Isum)1 = (Isum)2, the condition  ≪ ,

notations

(12)

and integrating Eq. (11) over the phase for junctions 1

and 2, the potential energy takes the form

(13)

A detailed derivation of the expressions for the con-
stants that are needed to find the matrix elements of
the Hamiltonian is given in the Appendix. The kinetic
energy is calculated by substituting them into (7) and
(8), and the oscillator frequency and the potential
energy have the form
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Fig. 2. The energy dependencies of the stationary states of the 3JJ qubit as functions of fz at α = 0.8 (a) and α at fz = 0 (b) at EJ =

1.31 × 10–15 erg, EJ/EC = 5, C = 1.96 × 10–24 abF; for comparison, we show the dependencies of the first energy levels on the

external f lux fz at α = 0.8 (c) and parameter α at fz = 0 (d), according to [23].
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(14)

(15)

(16)

Expressions (15) and (16) should be substituted
into (8) replacing T by V (in (8)).

To illustrate the results, we study the energies of the
stationary states of a symmetric silent qubit E1 ≡ E–,

E2 ≡ E+ as functions of the applied f lux ϕe and the

weight of the first harmonic EA/(2EB). Figure 3a shows

their dependence on the relative external magnetic
flux penetrating the circuit. One can see from the fig-
ure that the dependence of E2 – E1 from ϕe is much

less manifested than in the case of the 3JJ qubit. More-
over, in a symmetrical silent qubit, the function U(θ)
preserves the symmetry for different values of ϕe,

which is shown in the insets to Fig. 3a. The opposite
situation takes place in the case of the 3JJ qubit, in
which the magnetic f lux fz controls the potential

energy asymmetry. It can be shown that in an asym-
metric silent qubit the function U(θ) ceases to be sym-
metric for ϕe ≠ 0, as in the 3JJ qubit for fz ≠ 0. In this

case the dependence E1 ≡ E– and E2 ≡ E+ on ϕe does

not qualitatively differ from the one considered above.

The dependence of the stationary states energies of

a silent qubit on the parameter EA/(2EB) in the case of

a symmetric qubit (Fig. 3b) shows that the energy dif-

ference E1 ≡ E– and E2 ≡ E+ rapidly tends to zero with

decreasing parameter EA/(2EB). This can be easily

explained qualitatively, since as the value of  =

 increases the distance between

the right and left minima of the potential energy U(θ)

increases. Due to this, the intensity of tunneling

between the minima of the potential energy becomes

small. Thus, H12 and H21 tend to zero, and the differ-

ence H11 – H22 exactly equals zero due to the symmetry

of U(θ). By (2), this leads to closeness of the energies

of the first and second stationary states of the system.
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CONCLUSIONS

A calculation method has been proposed that
makes it possible to find the spin and energy basis and
the Hamiltonian matrix elements of the f lux qubit
analytically. We considered the examples of three-
junction, four-junction, and silent qubits and demon-
strated the possibility of using the described procedure
in definite ranges of values of the control magnetic
flux of the system at small (compared to the Joseph-
son’s frequency of the system) rates of its variation that
do not violate the condition of quasistationarity.

The dependence of the energy gap of qubits on the
amplitude of the magnetic f lux measured from the
degeneracy  point and on the relationships of the
Josephson energies of the system transitions has been
investigated both analytically and numerically. It is
shown that for a silent qubit the dependence of the
energy gap on the f lux is much less expressed than for
three-junction and four-junction flux qubits. This can
be useful for optimal control of the parameters of the
qubit systems. As well, the energy gap in f lux qubits
strongly depends on the distance between the minima
of the double-well potential.
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