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Abstract—Solution of the inverse problem for Parker’s one-dimensional mean-field dynamo model in a thin
spherical layer is considered. The method allows the spatial distribution of energy sources, the α- and
Ω-effects, to be found provided specified constraints occur on the solution. The highest ratio of the magnetic
energies for the Northern and Southern hemispheres is discussed as such a constraint. The method is a mod-
ification of the Monte-Carlo technique; it is convenient for parallel computations and based on minimization
of the cost function that characterizes the deviation of the model solution properties from the desired ones.
The calculations show that the ratio of the energies in the hemispheres may exceed an order of magnitude for
both poloidal and toroidal components of the magnetic energy. The ratio depends on the distance of the
effective zone of the generation of the magnetic field from the equator and the number of harmonics in the
spectrum. The greater this distance is and the higher the number of harmonics is, the stronger the magnetic
field asymmetry can be.
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INTRODUCTION

The current dynamo models describe transforma-
tion of the kinetic energy of conductive liquid f lows to
magnetic field energy. The theory can explain the
magnetic fields observed in many astrophysical
objects, e.g., galaxies, stars, and planets [1, 2]. In
dependence on the volume of observations and infor-
mation available for various objects, the models may
differ in complexity. Mean-field models exist that
describe the large-scale features of the magnetic field,
as well as three-dimensional dynamo models that
include the processes of material differentiation, heat
exchange, and turbulent effects. Simulations of the
dynamo processes make it possible to study new inter-
esting physical effects rather than only selecting the
optimal parameters for a particular model. Further, we
will focus on analyzing whether the magnetic field can
be generated under the conditions that the magnetic
energy levels are different in different hemispheres,
while there is no asymmetry between the energy
sources in the model.

Equatorial asymmetry is well known. In the geo-
magnetism theory, this asymmetry was explained by
superposition of the dipole and quadrupole modes [3].
Since the thresholds of generation of these modes are
similar, simultaneous generation will be interpreted as

a strong magnetic field in one hemisphere and a weak
one in the other. This scenario does not contradict the
paleomagnetic observations of the Phanerozoic Eon
(560 Myr).

In the solar dynamo, the equatorial asymmetry is
present in at least two forms. First, it is the difference
between the magnetic f luxes from two hemispheres, so
that the sign of this difference may change in time [4].
One more manifestation of the asymmetry occurred
during the Maunder minimum in the 17th century,
when more than 95% of sunspots were located in the
Southern hemisphere of the Sun [5].

Observations of planetary magnetic fields also
reveal equatorial asymmetry. A remarkable example is
the ancient magnetic field of Mars recorded in the
residual magnetization of the crust and associated
with the dynamo mechanism that was active in the
past [6].

The equatorial asymmetry of the magnetic field
does not contradict the dynamo theory and is present
in numerical models. With some particular sets of
parameters, such phenomena can be reproduced in
three-dimensional dynamo simulations in a spherical
shell, including the thermal convection equations
under the Boussinesq approximation with spherically
symmetrical boundary conditions [7–9]. It is interest-
ing to note that in the considered models the distribu-
tion of the kinetic energy exhibited substantially
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weaker equatorial asymmetry, if any, than that of the
magnetic energy.

For the case where the equatorial asymmetry of
flows in the convective zones could be caused by the
processes in the mantles of the planets, deviations of
the thermal f lux at the outer boundary from spherical
symmetry were introduced into the three-dimensional
models [6, 10, 11], which also induced the emergence
of the equatorial asymmetry in the magnetic field.

Below, based on the example of a simple mean-
field dynamo model, we will consider whether a mag-
netic field with a high degree of equatorial asymmetry
can be generated if the energy sources exhibit no
asymmetry. Since the behavior of Parker’s nonlinear
one-dimensional model considered here may be
rather complex, the spatial distributions of the energy
sources from which the maximum asymmetry of the
magnetic field can be obtained will be determined in
the inverse problem solution. The used method for
solving the inverse problem, which was first adapted
for the Parker equations in [12], makes it possible to
select the most significant factors that cause the spec-
ified behavior of the magnetic field. The method can
easily be modified for a wide class of nonlinear prob-
lems of mathematical physics of a high spatial and
parametric dimension.

1. A DYNAMO IN A SPHERICAL SHELL
Generation of a magnetic field in a spherical shell

is described by a system of mean-field equations [13]
(see also [14])

(1)

where A and B are the azimuthal components of the
vector potential A and the magnetic field B = curlA,
respectively; α(θ) is the α-effect, Ω(θ) is the differen-

tial rotation,  =  is the

diffusion operator, and η is the magnetic diffusion
coefficient. System (1) is solved in the interval 0 ≤ θ ≤
π with the boundary conditions B = 0 and A = 0 for θ =
0 and π.

In the dynamo theory, the poloidal and toroidal
components of the magnetic field are often used. In
our case, the radial component of the magnetic field

Br = (sinθA) and the azimuthal one determine

the poloidal and toroidal components, respectively.
The energy sources in system (1) are the α- and

Ω-effects. The first is responsible for generating the
poloidal component of the magnetic field from the
toroidal one via turbulence. The second effect
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describes the generation of the toroidal component of
the magnetic field due to the differential rotation of
liquid.

The influence of the magnetic field on the f low
(the nonlinearity) is specified by the algebraic α-
quenching

(2)

where Em(θ) =  is the magnetic energy.

2. THE INVERSE PROBLEM
The solution of the direct problem (1) and (2) with

the prescribed profiles of α0(θ) and Ω(θ) yields the
field B(θ, t) that can be compared to observations.
One of the difficulties of such an approach is a poor
knowledge of α0(θ) and Ω(θ). As an example, in the
planetary dynamo, these profiles are known only
from the three-dimensional calculations. For the
solar dynamo (see, e.g., [15]), the information on
the differential rotation Ω is known from helioseis-
mology, while the α-effect profiles vary from model
to model. In the galactic dynamo, the situation is
close to that of the solar dynamo, which causes the
use of rather simple mean-field models. The above
reasons motivate the approach where the profiles of
the α0(θ)- and Ω(θ)-effects would yield the solution
B(θ, t) that satisfies the specified properties, i.e., the
solution of the inverse problem for system (1) and (2)
(see [12]).

Let us introduce the cost function Ψ(B, B0), where
B and B0 are the modeled and observed magnetic
fields, respectively. The function Ψ has at least one
minimum at B = B0. A proper choice of Ψ and, in gen-
eral, the observed derivatives of the magnetic field B0

allow the problem to be reduced to searching for the
global minimum. However, in practice, the observa-
tions do not cover the entire spatial domain of the
magnetic-field generation, i.e., the problem turns out
to be ill-defined. At the same time, the solution char-
acteristics that are used in the comparison of the
model solution to the observations may result in a
large number of solutions with the same Ψ, i.e., the
nonuniqueness of the solution. This means that the
problem reduces to searching for the smallest Ψ under
a large number of local minima, which, in turn,
imposes some restrictions on the minimization algo-
rithms [16].

The next step is to consider only the large-scale
α0(θ) and Ω(θ) profiles, which corresponds to the first
Nα and NΩ Fourier modes in the series over θ

(3)
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The minimization problem will then be reduced to
the search for such Cα and CΩ that Ψ(Cα, CΩ) has a
minimum (probably, a local one). This is the minimi-
zation problem in the space of d = Nα + NΩ + 1 dimen-
sions. We note that to search for the minimum is not
our goal in itself. In other words, our concern is the set
of solutions at small Ψ rather than only a global mini-
mum that may even be absent. The analysis of the
α0(θ) and Ω(θ) profiles for such solutions provides
another insight into the model and observations. This
is a good way of learning how to put questions to the
model and to use it afterwards.

To solve the direct problem (1) and (2), we use the
central second-order differences for approximating
the spatial derivatives and the fourth-order Runge–
Kutta method for integrating in time. The C++ code
was developed for parallel computations with the MPI
system, so that each computer node solved Eqs. (1)
and (2) for a set of coefficients (Cα, CΩ) specified by
the random-number Gaussian generator in a certain
given range. To accelerate the convergence, the ran-
dom distribution for (Cα, CΩ) was specified in such a
way that the mean value was chosen to be equal to the
best previous choice (i.e., corresponding to the mini-
mum Ψ) for the particular coefficient. The dispersion
was calculated with the 3σ rule, so that the entire
interval was covered. This method is based on the
Monte-Carlo technique [16] and turned out to be
weakly sensitive to the presence of local minima in the
cost function.

In the cluster computations, we used N = 101 grid
points in θ space, a time step of τ = 10–5, and computer
nodes 1 ranging from 10 to 100. The number of itera-
tions was usually less than 10. The integration over
time was performed for the interval t = 20. For the
considered one-dimensional problem, the use of the

cluster was not crucial, but this method can be easily
developed for the multidimensional problem, where
the need for parallel computations will be large.

Further, we will consider some particular forms of
the cost function Ψ and discuss the meaning of the
obtained α0(θ) and Ω(θ) profiles.

3. MODEL RESULTS

The amplitude of the energy sources in Eq. (1) can
be expressed by a single parameter, that is, the dynamo

number $ = , where L = π is the spatial

scale and || ⋅ || is the norm. Here, we consider how the
solution of system (1) and (2) with limited ||α0|| ≤ 4α
and ||Ω|| ≤ 4ω (where 4α and 4ω are constants) depends
on the forms of the α0 and Ω profiles. The choice of a
particular form of the norm is rather arbitrary. Having
in mind that α0 is asymmetric relative to the equator,
we will use the following definition: || f || =

.

The fact that the asymmetric magnetic field is pres-
ent in Eqs. (1) and (2) was shown in [12], where the
solutions with a nonzero f lux of the magnetic field at
the equator were considered. The dynamo waves pass-
ing through the equator on the Sun are a prototype of
such a solution. The obtained solutions actually exhib-
ited the equatorial asymmetry of the magnetic energy.
Below, we will consider the cost functions that explic-
itly contain such asymmetry.

Let the ratio of the magnetic energies in the North-
ern (N) and Southern (S) hemispheres be η. We intro-
duce the cost function as Ψ = 1 – e–5, where 5 =
min(η, η–1). The Ψ minimum corresponds to the
highest ratio of the energies. Three cases will be con-

sidered: ηP =  for the poloidal part (case I), ηT =

 for the toroidal part (case II), and η =  for the

total magnetic energy Em =  (case III).

The results of minimization of Ψ for Eq. (3) with
Nα = NΩ = M, M = 3, and 4 = 50 are summarized in
the table. The obtained solutions actually demonstrate
a high degree of equatorial asymmetry in the magnetic
energy distribution. This effect is strongest in case II,
where ηT = 0.04, i.e., in the Southern hemisphere the
magnetic energy of the toroidal component of the
magnetic field is 25 times higher than that in the
Northern one. For the poloidal component, Ψ is
smallest for case I (as can be expected from the defini-
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The values of the magnetic energy and the equatorial asym-
metry

n N/S ηP ηT η

I

N 3 298 301

0.33 1.60 1.54

S 9 186 195

II

N 6 1 7

0.99 0.04 0.22

S 6 28 34
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N 6 25 31
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tion of Ψ). The results do not considerably depend on
the Fourier-series length M.

To explain the causes of the equatorial asymmetry,
let us consider the obtained α0 and Ω profiles in more
detail (Fig. 1). The analysis can be made in a simpler
way if we take the fact into account that the solution of
the linear problem (3) depends only of the product of
the dynamo number $ = α0 ⋅ Ω for the θ-independent
values of α0 and Ω. Since some features or the linear
solution may be also present in the nonlinear mode,
we show the product in Fig. 1 as well. The designation
$ will be also used for the case where it is not a num-
ber but a function of θ.

For case I, $ shows an extremum at high latitudes,
so that the zones of the maximum generation in the
hemispheres that correspond to the extrema of $ are
widely spaced. This favors the isolation of the hemi-
spheres from each other and, as a consequence, the

increase of the probability of fields with different mor-
phologies.

For case II, where the ratio of the toroidal energies
is at a maximum, $ shows two local extrema, one of
which is very close to the pole. For case III, the situa-
tion is the same: the near-pole extremum is better
expressed. The additional analysis of the solutions that
contain no asymmetry also supports the influence of
the distance between the extrema of the maximum
generation in the hemispheres: for these modes the
extrema were near the equator. At the equator itself,
where α0 changes sign, $ = 0.

In this connection, it is worth mentioning [17],
where the transition zone from the symmetric dynamo
mode to the asymmetrical one that also corresponds to
widely spaced extrema of the maximum generation
was found from linear analysis. However, it should be
noted that the analysis was made under the conditions
that α0 may contain the Fourier modes symmetrical
relative to the equator, which contradicts the physical
concept of this quantity.

Along with the concept of isolation of the genera-
tion sources in different hemispheres, the explanation
of the asymmetry due to superposition of the dipole
and quadrupole modes is also widely accepted. To ver-
ify this hypothesis, we expanded the Br and B field

Fig. 1.
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components in the Legendre polynomials. Selection
of the comparable amplitudes results in the following.
For case I, they are modes (1, 2, 3) and (1, 2) for the
poloidal and toroidal field, respectively. Here, the
numbers mean a dipole (1), a quadrupole (2), and so
on. This case is generally consistent with the concept
of the dipole and quadrupole superposition inducing
asymmetry.

The situation for cases II and III is different: at
least five first modes are responsible for the asymme-
try. There is no doubt that the observed asymmetry
results from the superposition of even and odd modes,
although because of their large number. The larger
their number is, the higher the accuracy is with which
the stepwise distribution of the field with a sudden
change at the equator can be obtained, and the higher
the degree of equatorial asymmetry will be. It is clear
that such a scenario can occur if there is a correlation
between the modes, although this condition may be
violated under large M due to turbulent effects.

We have not discussed the temporal behavior of the
fields. The solution is stationary for cases I and III,
while it is periodic for case II. It would be provocative
to compare case II to the solar dynamo, where the
asymmetry of magnetic activity occurred during the
Maunder minimum [5]. However, this scenario does
not work, because the dynamo waves are directed from
the equator to the poles (Fig. 2) rather than the
reverse, as on the Sun. This corresponds to the oppo-
site sign of $. The tests with the other sign of $ failed
to yield an asymmetric solution. It is also worth noting
that the oscillating component in the obtained solu-
tions is much smaller than the stationary one. The
dynamic α-quenching model was also tested in
numerical experiments [18]. We managed to obtain an
equatorward dynamo wave, although the degree of
asymmetry was negligible.

CONCLUSIONS

Usually, dynamo modeling is reduced to solving
the direct problem with specified parameters. How-
ever, even Parker’s one-dimensional model with alge-
braic quenching turns out to be so sensitive to the
choice of the parameters that there is no guarantee of
the correctness of the comparison of the results with
the observations. Moreover, in many cases, the
parameters themselves are to be determined. Due to
these issues, the entire configuration space of the
model should be analyzed. However, this may be a
challenging problem for more complex systems than
those considered above. In this connection, searching
for the optimal solution and developing the corre-
sponding algorithms are more promising. For this
purpose, the above-discussed method for solving the
inverse problem can be used. What is more important,
this method provides a new insight into the model. By

formulating different requirements for the solution,
which can be summed with different weights, one can
better understand the properties of the model.

Turning to the phenomenon of the equatorial
asymmetry considered above, we should note how our
results relate to those of the three-dimensional model-
ing mentioned in the Introduction. According to [8],
the asymmetry in the magnetic field weakly influences
the f low asymmetry, at least at the level of the ampli-
tudes of the kinetic energy in the hemispheres. In the
above model, the α-effect is quenched due to the local
increase of the magnetic energy. In other words, the
magnetic energy correlates with the α-effect ampli-
tude. From the considered mean-field model, it is not
clear how this phenomenon is connected with the
changes in the kinetic energies themselves; more
sophisticated models, taking hydrodynamic effects
into account, should be applied. It is also good to bear
in mind that the dynamo theory often deals with force-
less modes, when the magnetic field energy is large
and the electric current direction is close to that of the
magnetic field. In this case, the arising Lorentz force,
whose effect on the f low is opposite, will be weak and
the magnetic field may accumulate great energy. Such
a situation takes place in a geodynamo. It is evident
that the mechanism that quenches the generation
sources of the magnetic field should be modified for
such systems.
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