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Abstract—The classic problem of linear wave-packet propagation in a dispersive medium is considered.
Asymptotic equations of the Cauchy problem for two-dimensional Gaussian wave packets are constructed in
terms of Fourier integrals. These asymptotic solutions are regular at the caustics and describe new physical
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INTRODUCTION
The problem of linear dispersive wave propagation

is recognized as well studied. An impressive arsenal of
mathematical tools is based on representation of the
general solution in the form of expansion over eigen-
functions of the problem, which allows the solution of
various problems of wave propagation in inhomoge-
neous and nonstationary media. Asymptotic station-
ary phase and saddle-point methods have been pro-
posed as long ago as in the 19th century (P.S. Laplace,
G.G. Stokes, and W. Kelvin) as approaches essentially
considering wave properties: the oscillating character
of solutions and/or the solution localization in physi-
cal space or in the space of wave vectors. These meth-
ods provide an opportunity to analyze the principal
physical effect that determines the evolution of linear
wave packets: wave dispersion.

The case of one-dimensional wave propagation is
of special interest, since it makes it possible to formu-
late some important results in the form of explicit ana-
lytical expressions. These are primarily the results
concerning asymptotical behavior of wave packets for
long periods of time or at large distances from an emit-
ter. The asymptotic analysis forecasts the amplitude
decrease as the square root of time in the coordinate
system bound to the maximum of a wave disturbance
for waves of an arbitrary physical nature, except for
special cases of degeneration of the dispersion ratio,
namely, that of the second derivative of the frequency
over the wave number. The natural solution of the
degeneration problem by taking higher differentials of

dispersion dependence into consideration provides a
solution in terms of the Airy function and slower dis-
persive decay of the wave amplitude as A ~ t–1/3.

Generalization of asymptotic methods to a multi-
dimensional case is quite often made “by analogy,”
without due consideration of the multidimensionality
of the problem. Transformation of the coordinate sys-
tem is often considered to provide an opportunity to
reduce the problem to a one-dimensional problem
with consequent following of the formal pattern of the
one-dimensional problem solution. Degeneration of a
quadratic form related to the second differential is
treated in the same way: the eigenvector related to the
zero eigenvalue determines the direction in which the
problem can be reduced to a one-dimensional prob-
lem with customary solutions in the form of the Airy
function. In many wave problems, this simplistic
approach can be viewed as acceptable and mathemat-
ical rigor seen as an excess for the set tasks. Below, we
show that mathematically strict treatment applied
even in the case of the two-dimensional problem
reveals important physical effects and that the involve-
ment of higher (cubic) terms of asymptotic expansion
is not necessary even at degeneration of the quadratic
form. The solution appears not to be the power depen-
dence A ~ t–1/3, but A = const.

Geophysical hydrodynamics offers the richest
spectrum of problems of wave propagation in a
medium with anisotropy related to effects of rotation
and stratification. In these problems, correct applica-
tion of asymptotic methods reveals many remarkable
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effects determined by the multidimensionality of the
wave packet and volume finiteness. In this paper, the
main effects related to the multidimensionality and
examples in which these effects occur are considered.
The paper begins a series of studies of multidimen-
sionality effects in wave problems.

1. ASYMPTOTIC METHODS IN THE THEORY 
OF PROPAGATION OF LINEAR POINT WAVE 

PACKETS
We consider the classical problem of development

of a disturbance in an anisotropic spatially homoge-
neous medium allowing the existence of small ampli-
tude waves. Here, the cases of medium spatial inho-
mogeneity and nonstationarity are not considered and
will be presented in subsequent papers. Let wave emit-
ters and attenuation be absent, and the initial distur-
bance be localized in a certain physical space (which
tends to zero rapidly at infinity). Let us suppose that
we have managed to reduce the problem to a multidi-
mensional Fourier integral:

(1)

where n is the spatial dimension, Fn(k) is the Fourier
image of function fn at moment t = 0, k is the multidi-
mensional wave vector, and ω(k) is the dispersion
relationship determined by the type of considered
small-amplitude waves and assumed to be known. The
real part of (1) Re fn(x, t) is the solution of the physical
problem.

Apparently, integral (1) cannot be calculated ana-
lytically for the general case. At the same time, inte-
grals of the (1) type allow the efficient use of asymp-
totic methods. Presently, mathematical tools of the
asymptotic methods have been well stated in many
papers [1–4]. The multidimensional method of the
stationary phase (see Lighthill’s classical book [4])
reflects these method specifics most brightly. The
major parameter (time or distance) determines the
calculation of integral (1) over a rapidly oscillating
function. The highest term of the corresponding
asymptotic expansion is related to contributions of the
bending point neighborhoods and phase stationarity
(thus the name of the method). The Taylor series
expansion of phase θ = kx – ω(k)t accurate within
quadratic terms appears sufficient to calculate the
highest term of the expansion. The corresponding
quadratic form is used one way or another in many
asymptotic approaches (for example, the classical sta-
tionary phase method [2] and Maslov’s canonical
operator method [1]).

The presence of formally large parameter in phase
θ (1) means slow modification of the function Fn(k),
i.e., strong localization of the wave function in physi-
cal space. In this case, it is makes sense to speak about
point-wave packets and pointwise asymptotics of solu-

−= π − ω∫
/2( , ) (2 ) ( )exp( ( ) ) ,n

n nf t F i i t dx k kx k k

tions of (1). In this case, expansion of the phase func-
tion θ = kx – ω(k)t is connected with the maximum
point of a wave disturbance in physical space. With
degeneration of the quadratic form, a singularity in an
asymptotic expression emerges at the thus-selected
point.

In this paper, we are guided by different physical
premises and propose the method of reference solu-
tions. We assume the packet to be localized in the wave
vector space, and it means that we consider the wave
packets of finite sizes weakly modulated in physical
space. Such an approach also leads to the analysis of
behavior of the quadratic form at expansion of phase
function θ = kx – ω(k)t, but not in relation to the cur-
rent maximum of the wave amplitude, but regarding
the carrier harmonic of the modulated wave packet.
Speaking about the reference functions and solutions,
we only change the method of description of the wave
packet kinematics passing from the wave function in
the coordinate space (analogy to Euler hydrodynamics
description) to the wave packet–quasi-particle
marked with the wave vector of the carrier wave har-
monic (the Lagrangian approach). Note that a similar
approach applying reference (model) Gaussian pack-
ets is widely used, for example, in problems of radio
physics and fiber optics. The issue of the validity
range, which is very important for both approaches, is
not considered here. The above-stated physical argu-
ments appear sufficient for a wide range of problems of
wave propagation.

We consider a Taylor expansion for the frequency
ω(k) in the neighborhood of point k0 = (k0, l0):

(2)

Let us put the real symmetric two-dimensional
matrix and characteristic equation [5] in correspon-
dence to the quadratic part of phase θ expansion in (1)

(3)

Expanding the determinant, we gain the following
quadratic equation for eigenvalues
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The coefficients in (4) are the determinant det(A2)
and matrix track Tr(A2) and they are orthogonal
invariants of the matrix A2

(5)

Note that the Euler curvature is the track of the
matrix Tr(A2) [6]. By virtue of the symmetry and real-
ity of the matrix A2, eigenvalues λ1,2 are also real. We
highlight a simple, but important fact: calculation of
the roots in (4) is not mandatory for evaluation of inte-
gral (1) by the stationary phase method. The wave-
packet amplitude is determined by product λ1λ2, i.e.,
according to Vieta’s theorem, by determinant A2.
The asymptote of integral (1) f2(x, t) ≈ (iλ1λ2)–1/2 ≈
(idetA2)–1/2 has a simple physical sense: the product
λ1λ2 is proportional to the physical volume of the wave
packet (λ1 and λ2 set the principal axes of quadratic
form A2). The imaginary unit sets the phase shift ±π/4;
the sign of this shift is determined by the condition of
solution attenuation at infinity and can be obtained by
passing to the complex plane and applying various
modes of closure of the integration contour. In a par-
ticular case, it leads to a Fourier integral, which was
first calculated by Euler [7]. The introduction of low
attenuation and bypass of the pole over the complex
plane leads to the saddle-point method (see, for exam-
ple, [4]) and naturally provides the same result.

Generalization to the case of arbitrary dimension-
ality of space n does not produce special difficulties.
The asymptote of integral (1) has the form

(6)

in the limit t → +∞; |xi| → +∞. The wave vector k0 is
set by the stationary condition

(7)

while condition

(8)

determines the sufficiency of expansion (2) accurate
within the quadratic, by small deviations of the wave
vector terms. In Eq. (6), sgnAn is the matrix signature,
the difference between the number of positive and
negative eigenvalues of matrix An.

Asymptotic equation (6) is interpreted as follows.
Assuming large t, xi and finite ratio xi/t, we solve ray
equations (7) in relation to wave numbers ki = ki(xi/t).
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The obtained wave vector k0(x/t) in (6) describes the
rescaling (change of length or period) of the wave-
packet carrier in the process of its propagation. Note
that obtaining k0(x/t), i.e., a reversion of the ray equa-
tions, can be nontrivial, even for the waves in a homo-
geneous and isotropic medium, not to mention more
general situations.

Asymptotic equations (6)–(8) can be termed dis-
persive: at long times and a nonzero determinant (8),
each spatial coordinate shows attenuation t–1/2, and
the wave amplitude decreases in inverse proportion to
the wave packet “volume” in n-dimension space, i.e.,
as t–n/2. Speaking about the “volume” of the wave
packets, we should keep in mind the conditionality of
this term, namely: we consider the asymptotic behav-
ior of a point-wave packet, whose distribution is
described by a delta function in the space of wave
numbers. This is the factor that creates the amplitude
of the Fourier-harmonic Fn(k0) that occurs in (6) at
stationarity point (7). Below, we use expansion (2) for
the alternative method of evaluation of the integral (1)
asymptotic equation. The alternative is actually reduced
to a different definition of the vector k0 = (k0, l0).

The transfer to the problem of wave packets of a
finite volume seems clear: it is necessary to introduce
space–time modulation of the wave packet into con-
sideration and take the effects that occur into account.
One of the ways to do this is to formally introduce a
small attenuation for these point-wave packets. The
final solution is obtained in the limit of infinitesimal
attenuation. The problem with passage to the limit
appears unsolvable at caustics related to a singularity
of the asymptotic expression, when the determinant of
matrix sgnAn becomes zero. At such points, the known
asymptotic methods, including Maslov’s canonical
operator method, face difficulties, which are solved by
construction of new asymptotic solutions. These
problems are solved by analogy to a one-dimensional
problem taking the cubic term in the frequency expan-
sion into account. The obtained solutions in the form
of Airy functions are connected by asymptotic solu-
tions far from the caustic. This problem appears to be
quite time consuming.

Below we show how the finiteness of the physical
volume of the wave packet can be taken into account
by “smearing” the solution across the space of wave
vectors. In drastic contrast to other methods, our
approach does not require fulfillment of stationarity
condition (7); this allows us to avoid solving the ray
equations, which is indispensable for point-wave
packets. As well, we avoid problems at caustics with
determinant An (8) turning to zero. This is achieved at
the cost of introducing constraints on the initial con-
ditions: we are limited to the reference forms of wave
packets. In our opinion, this physically obvious
approach cannot significantly distort the transforma-
tion of wave packets of small, but finite volume, pri-
marily, considering the wave-packet rotation effect.
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2. PHYSICAL EFFECTS OF PROPAGATION 
OF WAVE PACKETS OF FINITE VOLUME
Let a wave packet have a Gaussian distribution at

initial moment t = 0

(9)

and the Fourier image

(10)

where Δk = (Δx)–1, Δl = (Δy)–1 describe the wave
packet width in the coordinate and the Fourier spaces.
Hereinafter, the corresponding solutions for distribu-
tions (9) and (10) will be named reference solutions. In
the limit Δk → 0, Δl → 0, distribution (10) tends to a δ
function; however, integral (1) essentially differs from
the above-presented pointwise asymptotics (6) and
(7). It is very important that we do not have a necessity
for passage to the limit!!!

For the integrand in (1), we construct symmetric
complex two-dimensional matrix B2 in the quadratic
approximation

(11)

which differs from matrix A2 in (3) by having unity in
its diagonal. Another important distinction: in A2, we
used the carrier wave number only for the reasons of
dimensionality, this scale did not render any influence
on the subsequent calculations. Introduction of new
spatial scales of the width of the wave packet Δk, Δl
removes this degeneration that is present in pointwise
solutions.

The behavior of reference solutions is still deter-
mined by invariants of quadratic form (11); however,
these invariants have a form that is more complex:

(12)

These dependences are not reduced to products of
combined second derivatives of the dispersion depen-
dence (compare to (4)), which implies the absence of
wave packet scale. Accordingly, amplitude A does not
become zero at degeneration of the quadratic form
that is determined only by the wave dispersion. The
more general appearance of an argument of the expo-
nent containing linear terms does not essentially com-
plicate the problem. The Fourier transformation of the

quadratic form exponent (see, for example, [2]) gives
us the following expression

(13)

Here, B–1 is an inverse matrix. For solutions that
decrease at infinity we have

For initial conditions (10), the real part of matrix B is
strictly positive (ReB > 0), which ensures the absolute
convergence of the integral. In our case, a dimension-
less argument of quadratic form ξ(ξx, ξy) appears
in (13):

(14)

determining the deviation from the wave-packet tra-
jectory with the wave vector of the carrier harmonic k0.
Here, cgr.x ≡ ; cgr.y ≡  in (14) are components of the
group velocity.

It is necessary to note the important physical dis-
tinctions of the considered approach from the station-
ary phase method: transfer to parameters like (14)
ξ(ξx, ξy) = 0 is provided by the presence of large
parameters: “infinite” time or distance (see (6)). In
our approach to reference solutions, the smallness of
argument ξ(ξx, ξy) determining the parameter devia-
tion is related to the narrowness of the wave-packet
spectrum (Δk → 0, Δl → 0). There are no explicit con-
straints on either coordinates or time in this approach.
In this sense, it is possible to consider our approach as
more general than the customary asymptotic methods.

For the determinant of matrix B in the neighbor-
hood of the carrier wave vector k0 = (k0, l0), we can
write:

(15)

where the following designations are used for deriva-
tives of the dispersion relationship:

The wave function then has the form

(16)

with the envelope (at t = 0 it is Gaussian distribution)
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(17)

and phase function

(18)

The correction to the carrier frequency ω(k0, l0) is
set by the quadratic form

(19)

and the phase shift also depends on time

(20)

Solution (14)–(20) is true at t ≥ 0, and at moment
t = 0 it coincides with (8) and describes dispersion
smearing accompanied by rotation of the wave packet
of finite width by a certain angle in physical space.
Apparently, the rate of the wave packet rotation is
finite and asymptotically tends to zero at t → +∞.

The numerator of the exponent index (17) can be
rewritten in the following form:

(21)

illustrating the nature of temporal transformation of
the initial (time-independent part) shape of the wave
packet. The time-dependent part is an ellipse with
axes ξxμxy – ξyμx = 0, ξyμxy – ξxμy = 0. At longer times,
it becomes determining. Interesting enough, the ini-
tially isotropic distribution does not mean the absence
of the wave-packet rotation effect: at t → +∞, the
shape of the wave packet is determined both by its ini-
tial width (Δk, Δl), and the properties of wave disper-
sion (μx, μy, μxy). The constructed solution (16)–(20)
does not formally require solving the ray equations,
unlike the above-considered pointwise asymptotics.
The wave vector of the carrier harmonic k = (k0, l0) is
fixed, which drastically simplifies the solution.

In the important special case of  = 0 and an iso-
tropic dispersion relationship, the group velocity
direction coincides with one of the ellipse axes. No
packet rotation occurs. Matrix B and inverse matrix

B–1 are diagonal, and two-dimensional solution (17) is
split into the product of two one-dimensional disper-
sive solutions:

(22)

The phase correction is split into a sum of arctan-
gents [8]

(23)

At t → ∞, (23) gives the limiting values of phase
θ2(∞) = ±π/2 or 0, depending on the signs of the
derivatives ωkk and ωll. In the n-dimensional case, the
difference between the numbers of positive and nega-
tive second derivatives corresponds to the real matrix
signature. Hence, for θ2 in (23), we have a correct limit
process to the point-packet asymptotic. Note that (22)
and (23) types of multidimensional solutions are well
known [9].

Qualitative distinctions between pointwise asymp-
totic and asymptotic equations for wave packets of
finite sizes are discovered at fulfillment of condition

(24)

For pointwise asymptotic equations, this situation
cannot be resolved by phase expansion to within qua-
dratic terms in the neighborhood of the stationary
phase point. The higher-order expansions lead to
solutions in terms of the Airy function. However, there
is no problem in considering wave packets of finite
sizes: in the index of the exponential envelope Ψ2(x, y,
t), the terms highest according to time fold up into a
perfect square and (23) describes the degeneration of
constant phase elliptical lines into a straight line in the
limit t → ∞. In one direction, the size of the wave
packet tends to the limiting value, while in direction
normal to this one, it extends to infinity. In this case,
the solution can be named quasi-dispersive, since dis-
persive smearing in the two-dimensional space is sim-
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ilar to the one-dimensional case. From (17)–(20), we
have

(25)

The isolines of solution (25) are ellipses, and their
eccentricity and orientation of principal axes depend
on time. Condition (24) stipulates that these ellipses
degenerate into a set of parallel straight lines at t →
+∞. Any cross section of the wave packet is of Gauss-
ian form, but the width varies with time differently:
along the minor axis it tends to a constant value, while
along the major axis, it smears linearly with time,
which provides wave-packet attenuation similar to the
one-dimensional case D–1/2 ~ t–1/2. Apparently, our
approach, which takes the finite sizes of the wave
packet into consideration in the simplest possible way
causes qualitatively new effects (rotation of the wave-
packet and modification of its shape) in comparison
with the one-dimensional case. At the same time, our
approach removes the difficulty related to degenera-
tion of determinant (24) that describes the dispersion
of pointwise solutions irrespective of the higher terms
of asymptotic expansions.

Note that for the isotropic dispersion law ω(k, l) =
Ω( ),  = (k2 + l2), the condition of caustic ( )2 –
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b are random constants).
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3. EXAMPLE. A ROSSBY WAVE PACKET 
OF FINITE SIZE

In conclusion, we present an example to illustrate
the considered asymptotic analysis of the evolution of
two-dimensional linear wave packets of finite sizes.
We consider linear Rossby waves in the ocean with
permanent stratification, the dispersion relationship
for which looks like

(26)

Here, β = 2Ωcosθ0/R is the northern gradient of the
Coriolis parameter at latitude θ0, R is the radius, Ω is
the Earth’s rotation frequency, a2 = π2n2Ω2/(N2H2) is
the square of the eigenvalue of the boundary problem

along the vertical coordinate, N2 =  is the

Brunt–Väisälä frequency, which is assumed to be con-
stant, H is the depth of the ocean, k is the zonal com-
ponent of the wave vector, and l is the meridional
component of the wave vector, and n = 0, 1, … is the
ordinal number of the mode. For the barotropic mode
n = 0, scale a becomes zero. Condition (24) on the
degeneration of the point-wave packet dispersion in
terms of dimensionless wave numbers  = k/a,  = l/a
leads to the equation of hyperbolic lemniscates (a spe-
cial case of Booth’s lemniscate), which re well known
in the theory of plane algebraic curves

(27)

This curve, which is universal for the considered
type of waves, is displayed in Fig. 1b compared with
dispersion relationship (26) for baroclinic Rossby
waves (Fig. 1a). It is shown that the effects that are of
interest to us occur, for example, for waves with
rather high frequencies (vectors k1 and k2) in the
neighborhood of the maximum dimensionless fre-
quency  = 1/2.

−βω =
+ +2 2 2 .k

k l a

∂−
ρ ∂
g p

z

�k �l

+ + − + =� � � � � �

4 2 2 4 2 22 3 0.k k l l k l

ω� max

Fig. 1. (a) Isofrequencies of dispersion relationship (26) in dimensionless coordinates  = . Isofrequencies  = 0.45, 0.4,

0.35, 0.3, and wave vectors  = (–1, l1), l1 = ;  =  are shown for examples displayed in Figs. 2–4.
(b) The condition of dispersion degeneration (24) for baroclinic Rossby wave dispersion equation (26). Vectors for the examples
displayed in Figs. 2–4 are shown.

1.0(a) (b)l

−2.02.0 −1.51.5 −0.50.5−2.0
k k

−1.5 −0.5−1.0 −2.0 −1.5 −0.5−1.0

0.50.4

(−1, l1) (−1, l1)

0.3

0.45
)2

0.35

0

−0.5

−1.0

1.0
l

0.5

0

−0.5

−1.0

 2( 2, )l−

 2( 2, )l−

�k � �( , )k l ω�
�1k −17/4 3/2 � 2k − 2( 2, )l



MOSCOW UNIVERSITY PHYSICS BULLETIN  Vol. 72  No. 4  2017

ON THE ASYMPTOTICS OF MULTIDIMENSIONAL LINEAR 421

The lemniscate splits the entire phase space of
Rossby waves into two zones. Inside the curve (the
waves with the highest frequency), determinant B2 is
positive, i.e., the dispersion is positive. The external
zone corresponds to negative dispersion. The sign of
the dispersion essentially determines the dynamics of
weakly nonlinear dispersive waves [11]. In particular,
generation of cyclones and anticyclones, which are
often interpreted as nonlinear Rossby waves, is natu-
rally related to the corresponding zones of wave num-
bers represented by the lemniscate (cyclones corre-
spond to positive dispersion that takes place inside the
lemniscate, anticyclones correspond to negative dis-
persion that occurs outside the lemniscate). The cor-
rect consideration of this issue requires the analysis of
three-dimensional Rossby waves, which will be pre-
sented in our future papers.

Let us consider the effect of quasi-dispersion of a
packet of two-dimensional Rossby waves with the
dimensionless carrier wave vector  =

. The anisotropy of the dis-
persion relationship makes possible this nontrivial
effect manifestation even for the initially isotropic
shape of the wave packet. In Figs. 2–4, isolines of the
wave packet envelope are shown at different moments.
At shorter times (t = 1, t = 10), evolution is reduced to
slow, almost isotropic, smearing of the wave packet. At
longer times (t = 100, t = 1000), the smearing is pro-
longed according to a law that is close to linear (atten-
tion to the scale of axes). The smearing becomes
strongly anisotropic: the wave packet is stretched out
in a certain direction, asymptotically tending to the
limit at infinite times. Apparently, a qualitatively sim-
ilar effect of strong anisotropization of the initially
symmetric shape of the wave packet will be observed
for similar wave vectors as well. In other words, this
effect is structurally stable and rough for the finite
zone of the space of wave numbers and the considered
type of waves (Rossby waves), and consequently, is
physically significant. Within the limits of the pro-
posed approach, the problem of structural stability is
solved rather simply. Note that at construction of
pointwise asymptotics of wave packets close to caus-
tics, i.e., while considering higher approximations of
the method of stationary phase, the issue of the rough-
ness of the respective solutions remains open in many
cases.

In conclusion, we present two more cases of
Rossby wave packet behavior at the critical value of the
dimensionless wave vector  =

. In Figs. 3 and 4, as in Fig. 2,
the isolines of the wave-packet envelope are shown at
moments t = 0, 5, 25, and 125 for initial distributions
in the form of an ellipse. In Fig. 3, an ellipse with the
principal axes ratio of 2 is stretched along the x-axis,
and changes its shape and orientation during its evolu-
tion. The evolution lasts for significantly shorter peri-

�

1k
− −1/2 1/2( 1, [(17/4) 3/2] )

�

1k
− −1/2 1/2( 2 , [(33 5)/2])

ods than in the case of Fig. 2, and the wave packet
rotation takes less time than the subsequent quasi-dis-
persion smearing. The evolution of the wave packet
with the same parameters, but stretched along the
ordinate axis (Fig. 4) is similar.

We complete the series of examples with Fig. 5,
where the wave-packet cross sections at the level of the
half-maximum are shown, corresponding to the case
of Fig. 3 for times t = 0, 5, 25, and 125.

CONCLUSIONS

We have considered the approximate solutions of
some problems of wave propagation in a multi-dimen-
sional medium in view of the finiteness of the physical
volume of a wave packet. Our approach should not be
considered as a criticism of the well-developed asymp-
totic methods in the theory of linear wave propagation.
The known asymptotic methods (stationary phase,
saddle point, etc.) implicitly contain an assumption
about the infinitesimal volume of a wave packet. The
problem of the singularity of these asymptotic equa-
tions in the case of degeneration of dispersion is well
understood by specialists and is definitely related to
the pointwise representation of wave packets [3]. We
introduced wave-packet modulation, i.e., we consider
wave packets of finite volumes from the very begin-
ning. This statement raises serious difficulties for clas-
sical asymptotic methods. A possible dispute of the

Fig. 2. The shape of a Rossby wave packet with dimension-

less wave vector  =  at different
moments. Isolines correspond to levels 0.75 and 0.5 of the
wave maximum amplitude at t = 1, 10, 100, and 1000.
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Fig. 3. The shape of a Rossby wave packet for the dimensionless wave vector  =  at t = 0, 5, 25, and 125.
The isolines correspond to the 0.75 and 0.5 levels of the maximum amplitude of the wave.
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Fig. 4. The shape of a Rossby wave packet for the dimensionless wave vector  =  at different moments t =
0, 5, 25, and 125. The initial contour of the wave packet is oriented at right angles to the one shown in Fig. 3. The isolines corre-
spond to the 0.75 and 0.5 levels of the maximum amplitude of the wave.
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validities of various approaches faces the problem of
physical realities: how valid it is to consider a wave
packet as a point in coordinate space or in momentum
space. For oceanic waves, in our opinion, the resolu-
tion of these disputes can occur through reconciliation
of both points of view: the range of probable condi-
tions is so wide that we need to consider all of the
physical effects predicted by these approaches.

Our rather rough routine approach provides the
greatest advantages in the multi-dimensional case,
when the evolution of a wave packet gains an addi-
tional degree of freedom: an opportunity to modify the
packet shape and orientation of its envelope. We con-
sider it excessive to discuss the many physical effects

related to this quite simple fact. The strong anisotropy
of wave motions in the ocean inspires many theories.
We show that one explanation is related to the intrinsic
kinematics of packets of linear dispersive waves. In our
future publications we plan to present examples of var-
ious wave types.
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Fig. 5. Wave packet cross sections at a level of the half-
maximum corresponding to the case shown in Fig. 3  =

: for times t = 0 is solid line; t = 5 is the
dashed line; t = 25 is the dashed-and-dotted line; t = 125
is the dotted line.
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