О Б З О Р Ы ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Поиск новых распадов прелестных барионов в эксперименте LHCb

И.М. Беляев, В.Ю. Егорычев, В.И. Матюнин, А. Д.В. Саврина^{1,2}

¹ Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального

исследовательского центра «Курчатовский институт». Россия, 117218, Москва, Большая Черемушкинская, д. 25.

² Научно-исследовательский институт ядерной физики имени Д. В. Скобельцына Московского государственного университета имени М. В. Ломоносова. Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

Поступила в редакцию 20.11.2018, после доработки 26.11.2018, принята к публикации 27.11.2018.

В работе представлены результаты поисков новых распадов прелестных барионов в эксперименте LHCb. В частности, открыты новые распады $\Lambda_b^0 \to \psi(2S)p\pi^-, \Lambda_b^0 \to \Lambda_c^+ p\bar{p}\pi^-, \Lambda_b^0 \to pK^-\pi^+\pi^-, \Lambda_b^0 \to pK^-\pi^+\pi^-, \Sigma_b^0 \to pK^-\pi^+K^-$ и измерены отношения парциальных ширин. Результаты основываются на данных протон-протонных столкновений, набранных экспериментом LHCb, работающем на Большом адронном коллайдере.

Ключевые слова: физика высоких энергий, физика элементарных частиц, LHCb. УДК: 539.121.667. РАСS: 14.20.Мг, 13.30.Еg.

введение

Большой адронный коллайдер (БАК) [1] - крупнейший в мире ускоритель элементарных частиц, расположенный на границе Швейцарии и Франции в Европейском центре ядерных исследований (ЦЕРН). При рекордно высокой энергии протон-протонных (*pp*) столкновений на БАК сечение рождения тяжелых *b*-кварков во много раз превышает сечения, которые удавалось достичь в более ранних экспериментах. При этом основная часть рожденных прелестных адронов, т.е. адронов, содержащих *b*-кварк, вылетает вдоль оси столкновения, с одной из сторон которой находится передний одноплечевой спектрометр LHCb. Таким образом, в детектор LHCb попадает около половины всех рожденных прелестных частиц. Кроме того, энергия протон-протонных столкновений БАК позволят получить полный спектр *b*-адронов, включая тяжелые Λ_{b}^{0} -барионы. Этот факт делает изучение прелестных барионов не только интересной, но и многообещающей задачей для коллаборации LHCb.

Эксперимент LHCb — это один из четырех основных экспериментов на БАК. Он предназначен для поиска косвенных проявлений Новой физики за пределами Стандартной модели через изучение нарушения *CP*-симметрии в распадах частиц, содержащих *b*- и *c*-кварки. Кроме того, исследования ведутся в таких направлениях, как поиск редких распадов прелестных адронов и измерение углов треугольника унитарности, изучение свойств тяжелых адронов и поиск новых частиц. Устройство детектора LHCb подробно описано в работе [2].

Большое количество распадов *b*-барионов было обнаружено коллаборацией LHCb за последние несколько лет [3–20]. Среди них есть распады в состояния, содержащие экзотические частицы, в частности в анализе распада $\Lambda_b^0 \rightarrow J/\psi p K^-$ было получено первое наблюдение новых резонансов $P_c(4380)^+$ и $P_c(4450)^+$, распадающихся в J/ψ мезон и протон, и соответствующих модели пентакварков [21]. Таким образом, с использованием всех преимуществ эксперимента LHCb

продолжение поиска новых распадов прелестных барионов представляет особый интерес для экспериментальной физики высоких энергий.

Для исследований, описанных в настоящей работе, использовались данные, набранные в 2011 и 2012 гг. при энергии 7 и 8 ТэВ и соответствующих суммарной светимости $3 \phi \delta^{-1}$ (сеанс-I работы БАК), в то время как для исследований описанных в разд. 1 также использовались данные, набранные в 2015 и 2016 гг. при энергии 13 ТэВ и соответствующих суммарной светимости $1.9 \phi \delta^{-1}$ (часть сеанса-II работы БАК).

1. ОБНАРУЖЕНИЕ РАСПАДА $\Lambda_b^0 \to \psi(2S) p \pi^-$

В эксперименте LHCb впервые обнаружен Кабиббоподавленный распад $\Lambda_b^0 \to \psi(2S)p\pi^-$ [22]. Для анализа использовались данные протон-протонных столкновений, соответствующие суммарной светимости 3.0 фб⁻¹ набора данных сеанса-I и 1.9 фб⁻¹ части набора данных сеанса-II. В работе было измерено отношение парциальных ширин исследуемого распада по отношению к нормировочному, в качестве которого использовался распад $\Lambda_b^0 \to \psi(2S)pK^-$. Распады $\Lambda_b^0 \to \psi(2S)p\pi^-$ и $\Lambda_b^0 \to \psi(2S)pK^-$ рекон-

Распады $\Lambda_b^0 \to \psi(2S)p\pi^-$ и $\Lambda_b^0 \to \psi(2S)pK^-$ реконструировались с использованием димюонной моды распада $\psi(2S) \to \mu^+\mu^-$. В анализе применялись одинаковые критерии отбора для восстановления обоих каналов, за исключением требований на пионный кандидат в исследуемом канале и каоный в нормировочном.

Идентификация мюонов, протонов, пионов и каонов осуществлялась с использованием информации с детекторов колец черенковского излучения, калориметрической и мюонной систем. Для уменьшения комбинаторного фона в анализе не использовались треки, проходящие через первичную вершину pp-взаимодействия. Требовалось, чтобы мюонные, протонные, пионные и каонные кандидаты были хорошо идентифицированы, а их поперечный импульс был больше 550, 900, 500 и 200 МэВ/c соответственно. Кроме того, хорошая идентификация заряженных адронов была обеспечена ограничением на импульс частиц. Отбирались каоны и пионы с импульсом в интервале от 3.2 до $150 \, \Gamma$ эВ/c и протоны с импульсом от 10 до $150 \, \Gamma$ эВ/c.

^a E-mail: Viacheslav.Matiunin@cern.ch

Рис. 1. Распределение инвариантной массы отобранных кандидатов в канале (a) $\Lambda_b^0 \to \psi(2S) p \pi^-$ и (б) $\Lambda_b^0 \to \psi(2S) p K^-$. Черные точки с ошибками — спектры экспериментальных данных, тонкая красная линия — сигнальная компонента, синий пунктир — фоновая компонента и жирная оранжевая линия — суммарная функция аппроксимации

Пары противоположно заряженных частиц, идентифицированных как мюоны и формирующих общую вершину хорошего качества, объединялись в $\psi(2S)$ -кандидат. Далее отбирались $\psi(2S)$ -кандидаты, имеющие инвариантную массу в диапазоне от 3.67 до $3.70 \, \Gamma$ эВ/ c^2 . Асимметричный интервал вокруг номинального значения массы $\psi(2S)$ -мезона был выбран для учета излучения фотонов заряженными частицами в конечном состоянии.

Для формирования Λ^0_b -кандидата к отобранным $\psi(2S)$ -мезонам добавлялись протон и отрицательно заряженный пион в случае исследуемого канала или отрицательно заряженный каон в случае нормировочного. Каждому Λ_b^0 -кандидату ставилась в соответствие первичная вершина, по отношению к которой он имел наименьший χ^2_{1P} , где χ^2_{1P} определяется как разница между χ^2 аппроксимации первичной вершины с учетом и без учета данной частицы. С целью подавления фона от частиц, родившихся в первичной вершине, и от плохо реконструированных кандидатов требовалось, чтобы измеренное время распада Λ_b^0 -бариона лежало в интервале от 0.2 до 2.0 мм/с. Для улучшения разрешения по инвариантной массе Λ_h^0 -бариона применялась процедура кинематической подгонки дерева распада [23]. В процессе такой подгонки дерево распада заново аппроксимировалось с условием, чтобы импульс Λ^0_b -кандидата был направлен из первичной вершины, а инвариантная масса $\mu^+\mu^-$ -комбинации равнялась номинальному значению массы $\psi(2S)$ -мезона [24]. Наложением ограничения на χ^2 достигается хорошее качество такой глобальной аппроксимации.

Для того, чтобы уменьшить вклад от распадов $B^0 \to \psi(2S) K^+ \pi^-$ и $B^0_s \to \psi(2S) K^+ K^-$, в которых один или несколько адронов неверно идентифицированы, применялась следующая процедура. Например, в исследуемом канале $\Lambda^0_b \to \psi(2S) p \pi^-$ для устранения вклада от распада $B^0 \to \psi(2S) K^+ \pi^-$ масса Λ^0_b -кандидата вычислялась в предположении каонной массовой гипотезы для протона. Затем если полученное значение лежало в области номинальной массы B^0 -мезона, то такой кандидат не использовался для дальнейшего анализа. Аналогичным образом устранялся вклад от распада $B^0_s \to \psi(2S) K^+ K^-$. Вклады от обоих распадов B^0 - и B^0_s -мезонов устранялись как в исследуемом, так и в нормировочном каналах.

На рис. 1 представлены распределения инвариантной массы отобранных $\Lambda^0_b o \psi(2S) p \pi^-$ -кандидатов, а также кандидатов для нормировочного канала $\Lambda_b^0 \to \psi(2S) p K^-$. Для определения количества сигнальных событий распределения аппроксимировались небинированным методом максимального правдоподобия. Для этого осуществлялась подгонка распределения с помощью модифицированной функции Гаусса [25, 26], параметры которой были взяты из моделирования. Для описания комбинаторного фона использовался полином второй степени. В результате аппроксимации данных распределений количество сигнальных событий составило 121 ± 13 для распада $\Lambda_b^0 \to \psi(2S) p\pi^-$ и 806 ± 29 для распада $\Lambda_b^0 \to \psi(2S) pK^-$. Кроме того, в распаде $\Lambda_b^0 \to \psi(2S) p\pi^-$ был исследован фазовый объем. На рис. 2 представлены распределения инвариантной массы $\psi(2S)p$ -, $\psi(2S)\pi^{-}$ - и $p\pi^{-}$ -комбинаций, полученные с помощью техники вычитания контрольных интервалов [27]. Также представлены распределения, полученные из данных математического моделирования на основании модели распада по фазовому объему. При настоящей статистике значительного отклонения в распределениях между экспериментальными данными и данными математического моделирования не обнаружено.

Отношение парциальных ширин вычислялось по формуле

$$\begin{split} \frac{\mathcal{B}(\Lambda_b^0 \to \psi(2S) \, p\pi^-)}{\mathcal{B}(\Lambda_b^0 \to \psi(2S) \, pK^-)} &= \\ &= \frac{N_{\Lambda_b^0 \to \psi(2S) \, p\pi^-}}{N_{\Lambda_b^0 \to \psi(2S) \, pK^-}} \times \frac{\varepsilon_{\Lambda_b^0 \to \psi(2S) \, pK^-}}{\varepsilon_{\Lambda_b^0 \to \psi(2S) \, p\pi^-}}, \end{split}$$

где N — это число событий, а ε — эффективность для данного канала распада. Полная эффективность определялась как произведение геометрической эффективности детектора LHCb, эффективности регистрации, реконструкции, отбора и эффективности триггера. Эффективность идентификации определялась с использованием калибровочных данных распадов $D^{*+} \rightarrow D^0 (\rightarrow K^- \pi^+) \pi^+$, $K_s \rightarrow \pi^+ \pi^-$, $D_s^+ \rightarrow \phi (\rightarrow K^+ K^-) \pi^+$, $\Lambda \rightarrow p \pi^-$ и $\Lambda_c^+ \rightarrow p K^+ \pi^-$ [28, 29]. Остальные эффективности получались с использованием данных математического моделирования методом

Рис. 2. Распределение инвариантной массы (a) $\psi(2S)p$ -, (б) $\psi(2S)\pi^-$ - и (в) $p\pi^-$ -комбинации для сигнальной компоненты в распаде $\Lambda_b^0 \to \psi(2S)p\pi^-$. Черные точки с ошибками — спектры экспериментальных данных, а синяя линия — спектры, полученные из математического моделирования по фазовому объему

Монте-Карло. Спектры математического моделирования для поперечного импульса и псевдобыстроты Λ_b^0 -бариона были поправлены с учетом реальных распределений. Для учета резонансной структуры в нормировочном канале $\Lambda_b^0 \to \psi(2S) pK^-$ аналогичным образом были поправлены спектры по $m(pK^-)$ и $\cos(\theta_{pK^-})$. Здесь θ_{pK^-} — это угол между векторами импульса каона и Λ_b^0 -бариона в системе покоя pK^- . Для учета неточностей в моделировании заряженных треков также применялись поправки с использованием калибровочных данных [30].

Благодаря тому, что продукты распадов в исследуемом и нормировочном каналах имеют близкую топологию и кинематику, большинство систематических погрешностей сократились при вычислении отношения парциальных ширин. Например, сократилась систематическая погрешность, связанная с идентификацией мюонов и реконструкцией $\psi(2S)$ -мезонов. Основной вклад в систематическую погрешность дали погрешность триггера (1.1%) и различие в описании спектров экспериментальных данных и данных математического моделирования (1.0%). Кроме того, были оценены вклады от таких источников, как выбор функции для аппроксимации распределений (0.7%), ограниченная статистика калибровочных данных, используемых для определения эффективностей (0.2%), и ограниченное количество данных математического моделирования (0.5%). Общая систематическая погрешность, полученная как квадратный корень из квадратичной суммы отдельных компонент, составила 1.7 %.

В работе впервые был экспериментально обнаружен распад $\Lambda_b^0 \rightarrow \psi(2S) p\pi^-$ и измерено отношение его парциальной ширины по отношению к $\Lambda_b^0 \rightarrow \psi(2S) pK^-$:

$$\frac{\mathcal{B}(\Lambda_b^0 \to \psi(2S) p\pi^-)}{\mathcal{B}(\Lambda_b^0 \to \psi(2S) pK^-)} = (11.4 \pm 1.3 \pm 0.2) \%,$$

где первая ошибка — статистическая, вторая — систематическая. Исследована резонансная структура в распаде $\Lambda_b^0 \to \psi(2S) p \pi^-$. При данной статистике значимого вклада от экзотических состояний не обнаружено. Подробности анализа можно найти в работе [22].

2. ОБНАРУЖЕНИЕ РАСПАДА $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$

В эксперименте LHCb впервые обнаружен распад $\Lambda_b^0 \to \Lambda_c^+ p \bar{p} \pi^-$ [31]. Для анализа использовались данные протон-протонных столкновений, соответствующие

суммарной светимости 3.0 $\phi 6^{-1}$ набора данных сеанса-I. В работе было измерено отношение парциальных ширин исследуемого распада по отношению к нормировочному, в качестве которого использовался распад $\Lambda_b^0 \to \Lambda_c^+ \pi^-$.

Распады $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$ и $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ реконструировались с использованием моды распада $\Lambda_c^+ \to p K^- \pi^+$. Критерии отбора для восстановления $\Lambda_c^+ \to p K^- \pi^+$ кандидатов в исследуемом и нормировочном каналах были одинаковыми.

Идентификация протонов, пионов и каонов осуществлялась с использованием информации с детекторов колец черенковского излучения, калориметрической и мюонной систем. В анализе использовались каоны, пионы, протоны и антипротоны с поперечным импульсом больше 100 МэВ/c. Для уменьшения комбинаторного фона при анализе отброшены треки, проходящие через первичную вершину pp-взаимодействия. Кроме того, хорошая идентификация заряженных адронов обеспечивалась применением ограничения на импульс частиц. Требовалось, чтобы каоны и пионы имели импульс больше 1Γ эВ/c, а протоны и антипротоны имели импульс больше 10Γ эВ/c.

Протон, каон и пион, формирующие общую вершину хорошего качества, объединялись в Λ_c^+ -кандидат. Требовалось, чтобы хотя бы один из адронов в Λ_c^+ -кандидате имел поперечный импульс больше 500 МэВ/c и импульс больше 5Γ эВ/c. Далее отбирались Λ_c^+ -кандидаты, имеющие инвариантную массу в диапазоне $\pm 15 \text{ МэВ}/c^2$ от номинальной массы Λ_c^+ -бариона [24]. Кроме того, требовалось, чтобы скалярная сумма поперечных импульсов продуктов распада Λ_c^+ -бариона была больше 1.8Γ эВ/c.

Для формирования Λ_b^0 -кандидата к отобранным Λ_c^+ -барионам добавлялся отрицательно заряженный пион, а в случае исследуемого канала — еще протон и антипротон. Каждому Λ_b^0 -кандидату ставилась в соответствие первичная вершина, по отношению к которой он имел наименьший $\chi_{\rm IP}^2$. С целью подавления фона от частиц, родившихся в первичной вершине, требовалось, чтобы измеренное время распада Λ_b^0 -бариона было больше 2 пс. Кроме того, требовалось, чтобы хотя бы один из заряженных адронов в конечном состоянии имел поперечный импульс больше 1.7Γ эВ/c и импульс больше 10Γ эВ/c. Для улучшения разрешения по массе Λ_b^0 -бариона применялась процедура кинематической подгонки дерева распада заново аппроксимировалось

Рис. 3. Распределение инвариантной массы отобранных кандидатов в канале (a) $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$ и (б) $\Lambda_b^0 \to \Lambda_c^+ \pi^-$. Черные точки с ошибками — спектры экспериментальных данных, красный пунктир — сигнальная компонента, зеленый пунктир — фоновая компонента, фиолетовый пунктир — вклад от частично реконструированного распада $\Lambda_b^0 \to \Lambda_c^+ \rho^-$, коричневый штрихпунктир — вклад от распада $\Lambda_b^0 \to \Lambda_c^+ K^-$ при ложной идентификации каона как пиона, зеленый пунктир — фоновая компонента и сплошная синяя линия — суммарная функция аппроксимации

с условием, чтобы импульс Λ_b^0 -кандидата был направлен из первичной вершины, а инвариантная масса Λ_c^+ -кандидата равнялась номинальному значению массы Λ_c^+ -бариона.

Для того, чтобы уменьшить вклад от распадов $\overline{B}^0(\overline{B}^0_s) \to D^+(D^+_s)\pi^-$ и $\overline{B}^0(\overline{B}^0_s) \to D^+(D^+_s)p\overline{p}\pi^-$, где $D^+(D^+_s)$ распадаются по моде $D^+(D^+_s) \to K^+K^-\pi^+$ или $D^+ \to K^-\pi^+\pi^+$, в которых один или несколько адронов неверно идентифицированы, применялась следующая процедура. Во-первых, вычислялась масса Λ^+_c -кандидата в предположении пионной или каонной массовой гипотезы для протона. Во-вторых, вычислялась массонной массовой гипотезы для протона. Во-вторых, вычислялась массонной массовой гипотезы для Λ^+_c -бариона. Если первое и второе значение массы лежали в области $D^+(D^+_s)$ - и $\overline{B}^0(\overline{B}^0_s)$ -мезонов, то такой кандидат не использовался для анализа.

Дальнейшее подавление фона достигалось применением градиентного дерева ускоренных решений (BDTG) [32]. Для тренировки такого дерева решений использовались двенадцать переменных: качество фита Λ_c^+ - и Λ_b^0 -кандидатов, смещение вдоль оси pp-столкновения между Λ_c^+ - и Λ_b^0 -кандидатами, смещение вдоль оси pp-столкновения между Λ_b^0 -кандидатом и первичной вершиной, χ^2_{IP} для Λ^0_b -кандидата, угол между реконструированным импульсом Λ_b^0 -кандидата и направлением из первичной вершины в вершину распада, наименьший поперечный импульс и наименьший $\chi^2_{
m IP}$ среди продуктов распада Λ^+_c -бариона, поперечный импульс и $\chi^2_{\rm IP}$ пиона из распада Λ^0_b -бариона, наименьший поперечный импульс и наименьший $\chi^2_{\rm IP}$ среди протона и антипротона из распада Λ_b^0 -бариона. В качестве сигнальных событий для тренировки дерева решений BDTG использовались данные математического моделирования. В качестве фоновых событий использовались экспериментальные данные, для которых реконструированная масса Λ_b^0 -кандидата была значи-тельно выше номинальной массы Λ_b^0 -бариона. Вклад от распадов $\Lambda_b^0 \to \Lambda_c^+ K^+ K^- \pi^-$, $\overline{B}^0 \to \Lambda_c^+ \overline{p} \pi^+ \pi^$ и $\overline{B}^0_s \to \Lambda^+_c \overline{p} K^+ \pi^-$ был устранен с помощью процедуры, аналогичной описанной в разд. 1. Затем отбор с помощью дерева решений BDTG был оптимизирован и применен к Λ_{b}^{0} -кандидатам в исследуемом канале. Для нормировочного канала аналогичная процедура

не дала значительного выигрыша в значимости сигнала, поэтому отбор с помощью дерева решений BDTG в нормировочном канале не применялся.

На рис. З представлены распределения инвариантной массы отобранных кандидатов в канале $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$, а также кандидатов для нормировочного канала $\Lambda_b^0 \to \Lambda_c^+ \pi^-$. Для определения количества сигнальных событий распределения аппроксимировались небинированным методом максимального правдоподобия. Для этого осуществлялась подгонка распределения с помощью суммы двух модифицированных функций Гаусса [25, 26], параметры которых были взяты из моделирования. Для описания комбинаторного фона использовалась экспоненциальная функция. В результате аппроксимации данных распределений количество сигнальных событий составило 926 ± 43 для распада $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$ и (167.00 ± 0.50) × 10³ для распада $\Lambda_b^0 \to \Lambda_c^+ \pi^-$.

В распаде $\Lambda_{c}^{0} \rightarrow \Lambda_{c}^{+} p \overline{p} \pi^{-}$ была исследована резонансная структура. На рис. 4 представлено распределение по инвариантной массе $\Lambda_{c}^{+} \pi^{-}$ -комбинации, полученное с помощью техники вычитания контрольных интервалов [27]. Для определения количества резонансных событий распределения аппроксимировались

Рис. 4. Распределение инвариантной массы $\Lambda_c^+ \pi^-$ комбинации для сигнальной компоненты в распаде $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$. Черные точки с ошибками — спектр экспериментальных данных, красный пунктир — резонансная $\Sigma_c^0 \to \Lambda_c^+ \pi^-$ -компонента, фиолетовый штрихпунктир — резонансная $\Sigma_c^{*0} \to \Lambda_c^+ \pi^-$ -компонента, зеленый пунктир — фоновая компонента и сплошная синяя линия — суммарная функция аппроксимации

Рис. 5. Распределение инвариантной массы Λ⁺_cπ⁻p комбинации для сигнальной компоненты в распаде Λ⁰_b → Λ⁺_cppπ⁻ для (a) во всем интервале по массе Λ⁺_cπ⁻-комбинации, (б) в области массы Σ⁰_c-резонанса и (в) в области массы Σ^{*0}_c-резонанса. Черные точки с ошибками – спектры экспериментальных данных, а красные точки с ошибками – спектры, полученные из математического моделирования по фазовому объему

небинированным методом максимального правдоподобия. Детально функция подгонки описана в работе [31]. В результате аппроксимации данных распределений количество сигнальных событий составило 59 ± 10 для распада $\Lambda_b^0 \to \Sigma_c^0 p \overline{p}$ и 104 ± 17 для распада $\Lambda_b^0 \to \Sigma_c^{*0} p \overline{p}$. Кроме того, был осуществлен поиск дибарионных состояний $\mathcal{D}_c^+ \to p \Sigma_c^0$ в спектрах инвариантной массы $\Lambda_c^+ \pi^- p$. Распределения для экспериментальных данных и данных математического моделирования на основании модели распада по фазовому объему представлены на рис. 5. При настоящей статистике значительного отклонения в распределениях между экспериментальными данными и данными математического моделирования не обнаружено.

Отношение парциальных ширин \mathcal{B}_r определялось при помощи подгонки одновременно двух распределений по инвариантной массе Λ_b^0 -кандидатов в нормировочном и сигнальном каналах. При такой подгонке количество событий в нормировочном канале $N_{\Lambda^0_{\rm h} o \Lambda^+_{\rm c} \pi^-}$ было свободным параметром, в то время как количество событий в сигнальном канале вычислялось как $N_{\Lambda_b^0\to\Lambda_c^+p\overline{p}\pi^-}=\mathcal{B}_r\times\varepsilon_r\times N_{\Lambda_b^0\to\Lambda_c^+\pi^-}.$ Здесь ε_r — отношение эффективностей между сигнальным и нормировочным каналами. Полная эффективность определялась как произведение геометрической эффективности детектора LHCb, эффективности регистрации, реконструкции, отбора и эффективности триггера. Частные эффективности были получены способом, аналогичным описанному в разд. 1. При этом к каждому событию в данных моделирования применялись поправочные веса для учета разницы в спектрах по сравнению с экспериментальными данными. Отношения парциальных ширин распадов через $\Sigma_c (2455)^0$ и $\Sigma_c^* (2520)^0$ -резонансы по отношению к распаду $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ были измерены аналогичным образом.

Благодаря тому, что в сигнальном и нормировочном каналах использовались одинаковые критерии отбора для восстановления $\Lambda_c^+ \rightarrow p K^- \pi^+$ -кандидатов, большинство систематических погрешностей сократилось при вычислении отношения парциальных ширин. Основной вклад в систематическую погрешность был обусловлен присутствием протона и антипротона в исследуемом канале и моделированием их взаимодействия с веществом детектора (4.4%). Следующий по значимости вклад в систематическую погрешность дали триггер (2.9%) и поправки к данным моделирования для учета резонансной структуры в сигнальном канале (1.8%). Остальные источники систематической погрешности подробно описаны в работе [31]. Общая систематическая погрешность, полученная как квадратный корень из квадратичной суммы отдельных компонент, составила 6.0%.

В работе впервые был экспериментально обнаружен распад $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$ и измерено отношение его парциальной ширины по отношению к распаду $\Lambda_b^0 \to \Lambda_c^+ \pi^-$:

$$\frac{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)} = 0.0540 \pm 0.0023 \pm 0.0032.$$

Также были обнаружены вклады от $\Sigma_c (2455)^0$ - и $\Sigma_c^* (2520)^0$ -резонансов и были измерены отношения их парциальных ширин по отношению к $\Lambda_b^0 \to \Lambda_c^+ p \bar{p} \pi^-$:

$$\begin{aligned} \frac{\mathcal{B}(\Lambda_b^0 \to \Sigma_c^0 p \overline{p}) \times \mathcal{B}(\Sigma_c^0 \to \Lambda_c^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)} &= \\ &= 0.089 \pm 0.015 \pm 0.006, \\ \frac{\mathcal{B}(\Lambda_b^0 \to \Sigma_c^{*0} p \overline{p}) \times \mathcal{B}(\Sigma_c^{*0} \to \Lambda_c^+ \pi^-)}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-)} &= \end{aligned}$$

$$= 0.119 \pm 0.020 \pm 0.014.$$

В приведенных выше формулах первая ошибка — статистическая, вторая — систематическая. Кроме того, было исследовано распределение инвариантной массы $\Lambda_c^+ p \pi^-$ -комбинации на предмет возможного присутствия вкладов от дибарионных резонансов. При данной статистике значимых пиков не обнаружено. Подробности анализа можно найти в работе [31].

3. ИЗМЕРЕНИЕ ПАРЦИАЛЬНЫХ ШИРИН РАСПАДОВ Λ_b^0 - И Ξ_B^0 -БАРИОНОВ В КОНЕЧНЫЕ СОСТОЯНИЯ С ЧЕТЫРЬМЯ ЗАРЯЖЕННЫМИ АДРОНАМИ

В эксперименте LHCb было изучено семь распадов *b*-барионов X_b^0 : $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Xi_b^0 \to pK^-\pi^+\pi^-$, $\Xi_b^0 \to pK^-\pi^+K^-$ и $\Xi_b^0 \to pK^-\pi^+K^-$ [33]. Здесь и далее X_b^0 обозначает Λ_b^0 - или Ξ_b^0 -барион. Для анализа использовались данные протон-протонных столкновений, соответствующие суммарной светимости 3.0 фб⁻¹ набора данных сеанса-I. В работе было измерено отношение парциальных ширин (включая отношение адронизационных долей в случае распада Ξ_b^0 -бариона) исследуемых распадов по отношению к нормировочному, в качестве которого использовался распад $\Lambda_b^0 \to \Lambda_c^+\pi^-$.

Распад $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ реконструировался с использованием моды распада $\Lambda_c^+ \to p K^- \pi^+$. В анализе использовались максимально близкие критерии отбора для восстановления X_b^0 -кандидатов в сигнальных и нормировочном каналах.

Идентификация протонов, пионов и каонов осуществлялась с использованием информации с детекторов колец черенковского излучения, калориметрической и мюонной систем. В анализе использовались каоны, пионы и протоны с поперечным импульсом больше 250 МэВ/c и $\chi^2_{\rm IP} > 16$. Кроме того, хорошая идентификация заряженных адронов обеспечивалась применением ограничения на импульс частиц. Требовалось, чтобы заряженные адроны имели импульс меньше $100 \, \Gamma$ эВ/c.

Протон и три заряженных адрона, соответствующие конечному состоянию одного из исследуемых каналов, формирующие общую вершину хорошего качества, объединялись в X_h^0 -кандидат. Каждому X_h^0 -кандидату ставилась в соответствие первичная вершина, по отношению к которой он имел наименьший χ^2_{IP} . С целью подавления фона от частиц, родившихся в первичной вершине, требовалась достаточно большая значимость измеренного расстояния отлета X_b⁰-кандидата. В анализе использовались только X_b⁰-кандидаты с поперечным импульсом больше 1.5 ГэВ/с. Для улучшения разрешения по инвариантной массе X_b^0 -бариона применялась процедура кинематической подгонки дерева распада [23]. В процессе такой подгонки дерево распада заново аппроксимировалось с условием, чтобы импульс X_h^0 -кандидата был направлен из первичной вершины.

Для того, чтобы уменьшить вклад от распадов B^0 и B_s^0 -мезонов в конечные состояния, содержащие четыре заряженных адрона, без участия чармониевого резонанса с пионом или каоном, неверно идентифицированными как протон, применялась следующая процедура. Вычислялась масса X_b^0 -кандидата в предположении пионной или каонной массовой гипотезы для протона. Если значение массы лежало в области B^0 и B_s^0 -мезонов, то такой кандидат не использовался для дальнейшего анализа.

Дальнейшее подавление фона достигалось применением дерева ускоренных решений (BDT) [32] с применением алгоритма AdaBoost [34]. Для тренировки такого дерева решений использовались следующие переменные: поперечный импульс, псевдобыстрота, $\chi^2_{\rm IP}$ -, χ^2 -вершины ($\chi^2_{\rm vtx}$) и значимость измеренного расстояния отлета X^{0}_{b} -кандидата, угол между реконструированным импульсом X^{0}_{b} -кандидата и направлением из первичной вершинь в вершину распада, наименьшее изменение $\chi^2_{\rm vtx}(X^0_{b})$ при добавлении любого из других треков в событии, сумма $\chi^2_{\rm IP}$ четырех треков в событии и асимметрия поперечного импульса ($p_{\rm T}$)

$$p_{\rm T}^{\rm asym} = \frac{p_{\rm T}(X_b^0) - p_{\rm T}^{\rm cone}}{p_{\rm T}(X_b^0) + p_{\rm T}^{\rm cone}},$$

где $p_{\rm T}^{\rm cone}$ — поперечная компонента суммы импульсов треков, относящихся к данному X_b^0 -кандидату, лежащих внутри конуса с углом 1.5 рад. В качестве сигнальных событий для тренировки дерева решений ВDT взяты данные математического моделирования для распада $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$. В качестве фоновых событий

использовались экспериментальные данные, для которых реконструированная масса X_b^0 -кандидатов была значительно выше номинальной массы Ξ_b^0 -бариона. Затем отбор с помощью дерева решений BDT был оптимизирован и применен к X_b^0 -кандидатам.

Для нормировочного распада $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$ отбирались кандидаты, имеющие массу $p K^- \pi^+$ -комбинации в области номинальной массы Λ_c^+ -бариона [24]. Кандидаты с массой вне этой области рассматривались как сигнальные для $p K^- \pi^+ \pi^-$ -спектра.

В сигнальных каналах вклад от двухчастичных Λ_c^+h -, Ξ_c^+h -, трехчастичных Dph- и $(c\bar{c})ph$ -распадов был устранен с помощью процедуры, аналогичной описанной в разд. 1. Здесь h обозначает пион или каон, D это D^0 -, D^+ - или D_s^+ -мезон, а $(c\bar{c})$ — чармониевый резонанс.

На рис. 6 и 7 представлен пример распределения по инвариантной массе отобранных $p\pi^-\pi^+\pi^-$ кандидатов и распределение по инвариантной массе $\Lambda_c^+\pi^-$ -кандидатов. Для определения количества сигнальных событий осуществлялась одновременная аппроксимировались небинированным методом максимального правдоподобия распределений инвариантной массы X_b^0 -кандидатов в предположении каждого из пяти наборов массовых гипотез. В качестве сигнальной компоненты функции подгонки использовалась сумма

Рис. 6. Распределение инвариантной массы $p\pi^-\pi^+\pi^-$ - кандидатов в (*a*) нормальном и (б) логарифмическом масштабе. Черные точки с ошибками — спектры экспериментальных данных, красный пунктир — сигнальная $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ -компонента, зеленый пунктир — сигнальная $\Xi_b^0 \to pK^-\pi^+\pi^-$ -компонента, черный пунктир — сигнальная $\Xi_b^0 \to pK^-\pi^+\pi^-$ -компонента, синий штрихпунктир — вклад от распада $B^0 \to K^+\pi^-\pi^+\pi^-$, синий точечный пунктир — вклад от распада $B^0 \to \pi^+\pi^-\pi^+\pi^-$, синий пунктир — вклад от частично реконструированных распадов B^0 -мезона в конечные состояния, содержащие пять заряженных адронов, и сплошная синяя линия — суммарная функция аппроксимации

Рис. 7. Распределение инвариантной массы отобранных кандидатов в канале $\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$. Черные точки с ошибками — спектр экспериментальных данных, зеленый пунктир — сигнальная компонента, розовый пунктир вклад от частично реконструированных распадов Λ_b^0 -бариона в конечные состояния, содержащие пять заряженных адронов, и сплошная синяя линия — суммарная функция аппроксимации

двух модифицированных функций Гаусса [25, 26], параметры которых были взяты из моделирования. Для описания вкладов от частично реконструированных распадов *B*-мезонов и X_b^0 -барионов в конечные состояния, содержащие четыре или пять заряженных адронов, а также вкладов от исследуемых распадов в предположении ложной идентификации использовалась сумма двух модифицированных функций Гаусса. Комбинаторный фон описывался полиномом первой степени. Результаты аппроксимации представлены в таблице. Значимость сигнала $\Xi_b^0 \rightarrow pK^-K^+K^-$ составила 2.3 σ , поэтому для значения его парциальной ширины оценивался 90%-й доверительный интервал.

В работе были измерены следующие отношения:

$$\begin{split} R(X_b^0 \to phh'h'') &= \frac{\mathcal{B}(X_b^0 \to phh'h'')}{\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+(pK^-\pi^+)\pi^-)} \times \frac{f_{X_b^0}}{f_{\Lambda_b^0}} = \\ &= \frac{N_{X_b^0 \to phh'h''}}{N_{\Lambda_b^0 \to \Lambda_c^+\pi^-}} \times \frac{\varepsilon_{\Lambda_b^0 \to \Lambda_c^+(pK^-\pi^+)\pi^-}}{\varepsilon_{X_b^0 \to phh'h''}}, \end{split}$$

где N — это число событий, f — адронизационная доля, ε — эффективность для данного канала распада. Полная эффективность определялась, как произведение геометрической эффективности детектора LHCb, эффективности регистрации, реконструкции, отбора и эффективности триггера. Эффективности определялись с использованием данных математического моделирования.

Таблица. Количество событий в каждом из сигнальных и нормировочном каналах, полученное в результате аппроксимации. Указана только статистическая погрешность

Мода распада	Число событий
$\Lambda_b^0 o p \pi^- \pi^+ \pi^-$	1809 ± 48
$\Lambda_b^0 \to p K^- \pi^+ \pi^-$	5193 ± 76
$\Lambda_b^0 \to p K^- K^+ \pi^-$	444 ± 30
$\Lambda_b^0 \to p K^- K^+ K^-$	1706 ± 46
$\Xi_b^0 \to p K^- \pi^+ \pi^-$	183 ± 22
$\Xi_b^0 \to p K^- \pi^+ K^-$	$199\pm\ 21$
$\Xi_b^0 \to p K^- K^+ K^-$	27 ± 14
$\Lambda_b^0 \to \Lambda_c^+ (\to p K^- \pi^+) \pi^-$	16518 ± 133

При этом применялись поправки, чтобы привести в соответствие спектры по переменным идентификации частиц и по фазовому объему для экспериментальных данных и данных математического моделирования. Для учета неточностей в моделировании заряженных треков также применялись поправки с использованием калибровочных данных [30].

Благодаря тому, что в сигнальных и нормировочном каналах использовались близкие критерии отбора, большинство систематических погрешностей сократилось при вычислении отношения парциальных ширин. Основной вклад в систематическую погрешность обусловливался неточным знанием моделей распадов Х_b⁰-барионов. Значение данной погрешности зависело от конкретного распада и достигало 4 %. Также были учтены источники систематической погрешности. связанные с выбором функции подгонки, соответствием спектров по кинематике X_{h}^{0} -барионов, устранением вкладов от распадов с открытым чармом и чармониевыми резонансами. Оценки вкладов от каждого источника систематической погрешности подробно описаны в работе [33]. Общая систематическая погрешность получалась как квадратный корень из квадратичной суммы отдельных компонент.

В работе впервые были экспериментально обнаружены распады $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-K^+K^-$, $\Xi_b^0 \to pK^-\pi^+\pi^-$ и $\Xi_b^0 \to pK^-\pi^+K^-$. С использованием известных значений парциальных ширин распадов $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+\pi^-)$ и $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$ [24] были получены следующие величины:

$$\begin{split} \mathcal{B}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-) &= \\ &= (1.90 \pm 0.06 \pm 0.010 \pm 0.16 \pm 0.07) \times 10^{-5}, \\ \mathcal{B}(\Lambda_b^0 \to pK^-\pi^+\pi^-) &= \\ &= (4.55 \pm 0.08 \pm 0.020 \pm 0.39 \pm 0.17) \times 10^{-5}, \\ \mathcal{B}(\Lambda_b^0 \to pK^-K^+\pi^-) &= \\ &= (0.37 \pm 0.03 \pm 0.004 \pm 0.03 \pm 0.01) \times 10^{-5}, \\ \mathcal{B}(\Lambda_b^0 \to pK^-K^+K^-) &= \\ &= (1.14 \pm 0.03 \pm 0.007 \pm 0.10 \pm 0.05) \times 10^{-5}, \\ \mathcal{B}(\Xi_b^0 \to pK^-\pi^+\pi^-) \times f_{\Xi_b^0}/f_{\Lambda_b^0} &= \\ &= (1.72 \pm 0.21 \pm 0.025 \pm 0.15 \pm 0.07) \times 10^{-6}, \\ \mathcal{B}(\Xi_b^0 \to pK^-\pi^+K^-) \times f_{\Xi_b^0}/f_{\Lambda_b^0} &= \\ &= (1.56 \pm 0.16 \pm 0.019 \pm 0.13 \pm 0.06) \times 10^{-6}, \\ \mathcal{B}(\Lambda_b^0 \to pK^-\pi^+\pi^-) \times f_{\Xi_b^0}/f_{\Lambda_b^0} \in \\ &\in [0.11 - 0.25] \times 10^{-6} \text{ at } 90\% \text{ C.L.}, \end{split}$$

где первая ошибка — статистическая, вторая — систематическая. Третья и четвертая погрешности соответствуют неточности в значениях $\mathcal{B}(\Lambda_b^0 \to \Lambda_c^+ \pi^-)$ и $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$. Подробности анализа можно найти в работе [33].

ЗАКЛЮЧЕНИЕ

С использованием данных, набранных экспериментом LHCb в протон-протонных столкновениях при энергии 7, 8 и 13 ТэВ, впервые были обнаружены распады $\Lambda_b^0 \to \psi(2S)p\pi^-, \Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-, \Lambda_b^0 \to p K^- \pi^+ \pi^-, \Lambda_b^0 \to p K^- K^+ K^-, \Xi_b^0 \to p K^- \pi^+ \pi^-, \Xi_b^0 \to p K^- \pi^+ K^-$ и измерены отношения парциальных ширин. Были изучены резонансные структуры распадов $\Lambda_b^0 \to \psi(2S)p\pi^-$ и $\Lambda_b^0 \to \Lambda_c^+ p \overline{p} \pi^-$, при данной статистике значимых вкладов от экзотических состояний не обнаружено.

Авторы хотели бы выразить благодарность рабочей группе LHCb по изучению прелестных адронов и кваркония за сотрудничество и плодотворные дискуссии, а также профессору А. В. Борисову за обсуждения и помощь в подготовке статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Evans L., Bryant P. // JINST. 2008. 3. S08001.
- 2. Alves A.A. et al. LHCb collaboration // JINST. 2008. 3. S08005.
- Aaij R. et al. LHCb collaboration // Phys. Rev. D. 2011. 84. 092001. [Erratum Phys. Rev. D. 2012. 85. 039904.]
- Aaij R. et al. LHCb collaboration // Phys. Lett. B. 2013. 724. P. 27.
- Aaij R. et al. LHCb collaboration // Phys. Lett. B. 2013. 725. P. 25.
- Aaij R. et al. LHCb collaboration // Phys. Rev. D. 2014. 89, N 3. 032001.
- 7. Aaij R. et al. LHCb collaboration // JHEP. 2014. 04. P. 087.
- Aaij R. et al. LHCb collaboration // Phys. Rev. Lett. 2014. 112. 202001.
- 9. Aaij R. et al. LHCb collaboration // JHEP. 2014. 08. P. 143.
- 10. Aaij R. et al. LHCb collaboration // JHEP. 2014 07. P. 103.
- 11. Aaij R. et al. LHCb collaboration // JHEP. 2015. 06. P. 115. [Erratum: JHEP. 2018. 09. P. 145.]

- Aaij R. et al. LHCb collaboration // Chin. Phys. C. 2016. 40, N 1. 011001.
- 13. Aaij R. et al. LHCb collaboration // JHEP. 2016. 05. P. 132.
- Aaij R. et al. LHCb collaboration // Phys. Lett. B. 2016. 759.
 P. 282.
- 15. Aaij R. et al. LHCb collaboration // JHEP. 2016. 05. P. 081.
- 16. Aaij R. et al. LHCb collaboration // JHEP. 2017. 04. P. 029.
- 17. Aaij R. et al. LHCb collaboration // JHEP. 2017. 06. P. 108.
- 18. Aaij R. et al. LHCb collaboration // JHEP 2017. 05. P. 030.
- Aaij R. et al. LHCb collaboration // Phys. Rev. Lett. 2017. 119, N 6. 062001.
- Aaij R. et al. LHCb collaboration // Phys. Rev. D. 2017. 96, N 11. 112005.
- 21. Aaij R. et al. LHCb collaboration // Phys. Rev. Lett. 2015. 115. 072001.
- 22. Aaij R. et al. LHCb collaboration // JHEP. 2018. 08. P. 131.
- 23. Hulsbergen W.D. // Nucl. Instrum. Meth. A. 2005. 552. P. 566.
- Patrignani C. et al. Particle Data Group // Phys. Rev. D. 2018 98. 030001.
- 25. Skwarnicki T. // Ph.D. Thesis, INP, Krakow, 1986.
- 26. Aaij R. et al. LHCb collaboration // Phys. Lett. B. 2012. 707. P. 52.
- 27. Pivk M., Le Diberder F. R. // Nucl. Instrum. Meth. A. 2005. 555. P. 356.
- Adinolfi M. et al. LHCb RICH Group // Eur. Phys. J. C. 2013.
 73. 2431.
- 29. Aaij R., Anderlini L., Benson S. et al. // arXiv: 1803.00824
- Aaij R. et al. LHCb collaboration // JINST. 2015. 10, N 02. P. 02007.
- Aaij R. et al. LHCb collaboration // Phys. Lett. B. 2018. 784.
 P. 101.
- 32. Breiman L., Friedman J., Olshen R., Stone C. // Classification and Regression Trees. 1984.
- 33. Aaij R. et al. LHCb collaboration // JHEP. 2018. 02. P. 098.
- Freund Y., Schapire R. E. // J. Comput. Syst. Sci. 1997. 55. P. 119.

Search for New Decays of Beauty Baryons in the LHCb Experiment

I. M. Belyaev¹, V. Yu. Egorychev¹, V. I. Matiunin^{1,a}, D. V. Savrina^{1,2}

¹Alikhanov Institute for Theoretical and Experimental Physics, National Research Centre "Kurchatov Institute". Moscow 117218, Russia.

²Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University. Moscow 119191, Russia. E-mail: ^aViacheslav.Matiunin@cern.ch.

The results of search for new decays of beauty baryons in the LHCb experiment are presented. In particular the new decays $\Lambda_b^0 \rightarrow \psi(2S)p\pi^-$, $\Lambda_b^0 \rightarrow \Lambda_c^+ p\overline{p}\pi^-$, $\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$, $\Lambda_b^0 \rightarrow pK^-\pi^+K^-$, $\Xi_b^0 \rightarrow pK^-\pi^+\pi^-$, $\Xi_b^0 \rightarrow pK^-\pi^+K^-$ are observed and ratios of branching fractions are measured. The results are based on the proton-proton collisions data collected by the LHCb experiment at the Large Hadron Collider.

Keywords: high energy physics, elementary particle physics, LHCb. PACS: 14.20.Mr, 13.30.Eg. *Received 20 November 2018*.

English version: Moscow University Physics Bulletin. 2019. 74, No. 2. Pp. 91–99.

Сведения об авторах

- 1. Беляев Иван Михайлович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (499) 789-66-00, e-mail: Ivan.Belyaev@cern.ch.
- 2. Егорычев Виктор Юрьевич доктор физ.-мат. наук, директор; тел.: (499) 789-66-00, e-mail: Victor.Egorychev@cern.ch.
- 3. Матюнин Вячеслав Игоревич инженер; тел.: (499) 789-66-00, e-mail: Viacheslav.Matiunin@cern.ch.
- 4. Саврина Дарья Викторовна канд. физ.-мат. наук, мл. науч. сотрудник; тел.: (499) 789-66-00, e-mail: Daria.Savrina@ccrn.ch.