ОПТИКА И СПЕКТРОСКОПИЯ. ЛАЗЕРНАЯ ФИЗИКА

Влияние наноразмерных обратных мицелл на фотофизические свойства молекул флуоресцеина

О.И. Волкова,^а А.А. Кулешова,⁶ А.М. Салецкий^в Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра общей физики. Россия, 119992, Москва, ГСП-2, Ленинские горы.

Поступила в редакцию 13.06.2020, после доработки 14.09.2020, принята к публикации 12.10.2020.

Проведены исследования фотофизических процессов в водно-мицеллярных растворах флуоресцеина (Ф) методами стационарной, время-разрешенной флуоресцентной спектроскопии и динамического рассеяния света. Установлено, что внедрение молекул красителя в обратные мицеллы вызывает увеличение их гидродинамических радиусов R_h , пропорциональное значению степени гидратации w.

Представлены спектры поглощения и флуоресценции, значения среднего времени жизни возбужденного состояния t и степени анизотропии флуоресценции r молекул Φ для различных значений R_h . Установлено, что с ростом R_h доля анионной формы красителя в водно-мицеллярных растворах увеличивается. При этом наблюдается рост отношения дипольных моментов молекул Φ в возбужденном и основном состояниях $\frac{\mu_e}{\mu_g}$, обусловленное структурной реорганизацией мицелл.

Экспериментально установлено, что время вращательной релаксации θ молекул красителя уменьшается с ростом R_h , что указывает на увеличение микровязкости окружения молекул Φ из-за локализации молекул красителя в области поверхностной воды в мицелле.

Ключевые слова: флуоресцеин, мицелла, поглощение, флуоресценция, спектры, анизотропия флуоресценции, время жизни возбужденного состояния. УДК: 535.34, 535.37. PACS: 78.55.-m.

введение

Молекулы красителей флуоресцеинового ряда широко применяются в медицине как в диагностике в качестве контрастных веществ, так и в фотодинамической терапии, в частности для лечения меланомы [1]. Имея высокие квантовые выходы для генерации синглетного кислорода, эти красители становятся потенциальными фотосенсибилизаторами для нового направления фотодинамической терапии — антимикробной фотодинамической терапии [2, 3]. Ф, имеющий наибольший квантовый выход флуоресценции из этого ряда красителей, используется в офтальмологической практике для определения поражений роговицы и исследования ретинального кровотока. Ф также используется в качестве контрастного агента в хирургических процедурах для неспецифической идентификации анатомических структур и в флуоресцентной микроскопии для эффективного окрашивания клеток. Кроме того, красители гомологичной серии флуоресцеина широко используются в качестве наномаркеров для исследования биологических объектов, в частности белков методами молекулярной спектроскопии [4-9]. В этой связи возникает необходимость изучения спектрально-люминесцентных характеристик и фотофизических процессов в данных красителях в условиях, близких к клеткам. Это можно сделать с привлечением простых моделей клетки. Одной из простейших моделей таких систем являются обратные мицеллы, которые используются для исследований влияния эффектов наноконфигурации на поведение воды, структурных изменений в белках и молекулах красителей.

Обратные мицеллы представляют собой наноразмерные частицы, состоящие из молекул поверхностно-активного вещества (ПАВ), которые собираются вокруг водного ядра, суспендированного в неполярном растворителе. Анионное ПАВ бис-2-этилгексилсульфосукцинат натрия (АОТ), является наиболее эффективным и хорошо изученным соединением для создания обратных мицелл в неполярных растворителях

Размер мицелл зависит от степени гидратации $[\underline{\mathrm{H}_2\mathrm{O}}]_{[\mathrm{AOT}]}$, где [AOT] и [H_2O] — молярные конw =центрации воды и поверхностно-активного вещества в растворе. Структура ионной обратной мицеллы представлена на рис. 1. Внутри мицеллы находится капля воды с радиусом R_w , которая окружена слоем поверхностной воды толщиной d. Для характеристики размера обратной мицеллы вводится гидродинамический радиус $R_h = R_w + d + l$ (где l - lдлина углеводородного хвоста). Согласно данным ИК-спектроскопии, вода внутри мицеллы находится в трех состояниях: «свободная», «объемная» и «связанная» [10]. «Свободная» вода — это вода, диспергированная в длинных углеводородных цепях молекул ПАВ. «Объемная» вода находится внутри капель обратной микроэмульсии и образует прочные водородные связи. Фракция воды существует в форме «связанных» молекул, которые взаимодействуют как с противоионами Na⁺, так и с полярной группой AOT.

При проведении исследований в системе обратная мицелла — молекула красителя обычно используются

^a E-mail: oksanavolkova_45@mail.ru

⁶ E-mail: kuleshova@physics.msu.ru

^e E-mail: sam@physics.msu.ru

Рис. 1. Схематическое представление ионной обратной мицеллы АОТ: R_h — гидродинамический радиус; R_w — радиус водной капли; $R = (R_w + d)$ — радиус водной капли, окруженной монослоем молекул ПАВ; d — область поверхностной воды (гидратированные полярные группы ПАВ); l — длина углеводородного хвоста ПАВ. А и В — возможные положения молекул Ф в мицелле

катионные красители. Анионные красители применяются очень редко. К небольшому числу работ, посвященных изучению систем обратная мицелла-анионный краситель, можно отнести [11-13]. Исследованию же фотофизических процессов в молекулах Ф, помещенных в обратные мицеллы, посвящены всего нескольких работ. Так, в [14] исследовались константы ионизации молекул Ф с высокой концентрацией $(\sim 10^{-3} \text{ моль/л})$ при одном значении w = 20. В [15] методом нелинейной спектроскопии исследовались оптические свойства Ф большой концентрации при двух значениях w. В то же время исследование молекулярных спектров Ф представляет интерес в связи со способностью его молекул находиться в различных формах (дианионной, анионной, катионной и нейтральной), которые имеют различные спектры поглощения и флуоресценции [16].

В данной работе представлены результаты исследования фотофизических процессов в молекулах Φ , внедренных в обратные мицеллы с разными значениями w (с разными значениями R_h), проведенных методами динамического рассеяния света, стационарной и время-разрешенной флуоресценции.

1. ЭКСПЕРИМЕНТ

Материалы. В работе использовали sodium 1,4-bis (2-ethylhexyl) sulfosuccinate AOT (SigmaeAldrich, Германия, чистота > 99%), декан (SigmaeAldrich, Германия, чистота > 99%) и Ф фирмы Sigma—Aldrich без дополнительной очистки.

Все растворы приготавливались из сухих реактивов АОТ и красителя, а также гептана. Сначала создавался 10%-й по массе раствор АОТ в гептане: взвешивались 1 г АОТ и 9 г гептана. Затем в 2 мл АОТ в гептане добавлялся краситель, разведенный в воде в количестве 100–500 мкл (число гидратации w варьировалось от 0 до 70) с концентрацией $C = 10^{-5}$ моль/л.

Определение размеров мицелл. Для определения размеров мицелл использовался метод динамического рассеяния света. Методика определения гидродинамического радиуса мицелл R_h описана в [17] и основана на определении временной корреляционной функции рассеянного света мицеллярными растворами

$$G(\tau) = \frac{\left\langle I(t) \cdot I(t+\tau) \right\rangle}{\left\langle I^2(t) \right\rangle},\tag{1}$$

где I(t) и $I(t+\tau)$ — интенсивность рассеянного света при времени t и $t+\tau$ соответственно.

Для монодисперсного коллоидного раствора

$$G(\tau) = A \exp\left(-\Gamma\tau\right),\tag{2}$$

где A — постоянная прибора, Γ — скорость релаксации, которая связана с коэффициентом диффузии D следующим соотношением:

$$D = \frac{\Gamma}{q^2},\tag{3}$$

q — вектор рассеяния, равный $q = 4\pi \frac{n}{\lambda} \sin\left(\frac{\phi}{2}\right)$, где ϕ — угол рассеяния (в наших экспериментах $\phi = 90^{\circ}$), λ — длина волны рассеянного света, n — показатель преломления раствора.

Зная коэффициент диффузии, в рамках модели Стокса—Эйнштейна—Дебая (в предположении сферической формы мицелл) определялся их гидродинамический радиус

$$R_h = \frac{kT}{6\pi\eta D},\tag{4}$$

где k — постоянная Больцмана, T — температура, η — вязкость растворителя.

Измерение динамического рассеяния света и анализ размеров частиц осуществлялся на приборе PhotocorCompact (в качестве источника света использовался полупроводниковый лазер с $\lambda = 638$ нм мощностью 25 мВт); точность определения гидродинамического радиуса мицелл равна $\delta R_h = \pm 0.3$ нм.

Измерение спектрально-люминесцентных характеристик растворов. Измерение спектров поглощения водно-мицеллярных растворов Ф были проведены на спектрофотометре Perkin Elmer Lambda 35 (спектральная ширина щели 0.5 нм).

Измерения спектрально-флуоресцентных характеристик молекул Φ в мицеллярных растворах проводились на спектрофлуориметре PerkinElmerLS 55 (спектральное разрешение 0.1 нм, воспроизводимость длин волн ± 0.5 нм). Для уменьшения погрешностей измерений спектры усреднялись по 10 сканам.

Выделение компонент спектров поглощения и флуоресценции осуществлялось методом модельной расшифровки, реализованном в программе Spectr-Relax [18]. При этом предполагалось наличие двух компонент в спектре поглощения и трех в спектре флуоресценции.

Степень анизотропии флуоресценции r определялась по формуле

$$r = \frac{I_{\rm VV} - kI_{\rm VH}}{I_{\rm VV} + 2kI_{\rm VH}},\tag{5}$$

где $I_{\rm VV}$ — интенсивность флуоресценции при вертикальной ориентации поляризаторов возбуждения и излучения; $I_{\rm VH}$ — интенсивность флуоресценции, полученная при вертикальной ориентации поляризатора возбуждения и горизонтальной ориентации поляризатора излучения; $k = \frac{I_{\rm HV}}{I_{\rm HH}}$; $I_{\rm HH}$ — интенсивность флуоресценции при горизонтальной ориентации поляризаторов возбуждения и излучения; $I_{\rm HV}$ — интенсивность флуоресценции при горизонтальной ориентации поляризаторов возбуждения и излучения; $I_{\rm HV}$ — интенсивность флуоресценции, полученная при горизонтальной ориентации поляризатора возбуждения и вертикальной ориентации поляризатора излучения.

Измерение времени жизни возбужденного состояния Ф. Измерение времени жизни флуоресценции растворов проводилось с использованием прибора Simple Tau 140, работающего в режиме счета фотонов (Becker & Hickl, Германия). Флуоресценцию Ф возбуждали лазером BDS-SM510 (длина волны 510 нм, длительность импульса 40 пс). Флуоресценция регистрировалась 16-канальным фотоприемником К5900 (Hamamatsu, Япония), перед которым находился решетчатый полихроматор (600 штрихов/мм). Ширина спектра на выходе полихроматора составляла 200 нм, что соответствовало 12.5 нм на канал. Время интегрирования составляло 30 с. Кривые кинетической флуоресценции были обработаны с использованием программы SPCImage (Becker & Hickl, Германия).

Кривая затухания флуоресценции аппроксимировалась несколькими экспонентами

$$F(t) = \sum_{i=1}^{N} A_i e^{\left(-\frac{t}{\tau_i}\right)},\tag{6}$$

где N — число экспонент, t — время, τ_i — время жизни флуоресценции и A_i — амплитуда сигнала. Погрешность определения времени жизни флуоресценции была ± 0.05 нс.

Все измерения были проведены при температуре 295 К.

2. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Были определены гидродинамические радиусы R_h мицелл без красителя и с Φ для различных значений степени гидратации w. В таблице представлены величины гидродинамического радиуса R_h мицеллы для четырех значений степени гидратации w, определенные с помощью соотношения (4) и разницы $\Delta R_h = R_h^{water+F} - R_h^{water}$ (здесь R_h^{water} — гидродинамический радиус мицелл без молекул красителя, $R_h^{water+F}$ — гидродинамический радиус мицелл с внедренными молекулами Φ).

	w	R_h , нм		ΔR_{1} um
		Вода	Ф+вода	Δn_h , HM
18	8.6	3.3	4.9	1.6
3	7	6.8	9.3	2.5
5	5	11	14.4	3.4
7	0	15	18.5	3.5

Таблица. Значения гидродинамического радиуса мицелл R_h и ΔR_h для исследованных систем

телями больше, чем для водных мицелл для всех исследованных значений w. Причем с ростом w наблюдается увеличение изменения ΔR_h для мицелл с внедренными молекулами Ф. В дальнейшем для установления зависимостей спектральнолюминесцентных характеристик водно-мицеллярных растворов использовались значения R_h для мицелл с внедренными молекулами красителей. Были измерены спектры поглощения и флуорес-

Из таблицы видно, что R_h с молекулами краси-

выли измерены спектры поглощения и флуоресценции красителей в мицеллярных растворах для различных значений их гидродинамического радиуса R_h . На рис. 2 в качестве примера представлены спектры поглощения (*a*) и флуоресценции (*б*) Φ в мицеллах с гидродинамическим радиусом $R_h = 9.3$ нм. Из рис. 2, *a* видно, что спектр поглощения Φ (кривая 1) имеет две полосы с длинами волн $\lambda_1 \sim 495$ нм и $\lambda_2 \sim 472$ нм. Полоса с λ_1 обусловлена поглощением дианионной формы Φ , а λ_2 —

анионной формы красителя [19]. На этом же рисунке представлено разделение спектров на две компоненты: полоса поглощения дианионной формы Ф (кривая 2) и полоса поглощения анионной формы Ф (кривая 3). На рис. 2, δ , (кривая 1) представлены спектры флуоресценции Ф при возбуждении 440 нм. При использовании этой длины волны возбуждаются молекулы Ф, находящиеся в анионной (а также катионной и нейтральной) формах. На этих же рисунках представлено разделение спектров на три компоненты (кривые 2–4). Кривая 2 (рис. 2, δ) — это спектр флуоресценции дианионной формы Ф, кривая 3 — спектр флуоресценции анионной формы Ф, а кривая 4 — спектр флуоресценции катионной и нейтральной форм Ф [19].

Были определены интенсивности выделенных полос в спектрах поглощения и флуоресценции, а затем вычислено отношение $\frac{I_3}{I_2}$. На рис. З представлены зависимости отношения $\frac{I_3}{I_2}$, полученные как из спектров поглощения (кривая 1), так и из спектров флуоресценции (кривая 2) от гидродинамического радиуса мицелл R_h . Из рис. З видно, что ход зависимостей $\frac{I_3}{I_2}(R_h)$ для спектров поглощения и флуоресценции практически одинаков. Результаты исследования спектральных характеристик Φ , представленные на рис. З, указывают на то, что с ростом R_h в формировании спектров поглощения и флуоресценции увеличивается доля анионной формы красителя.

Как показали результаты измерения спектральных характеристик Φ , в мицеллярных растворах наблюдаются сдвиги как спектров поглощения, так и спектров флуоресценции при изменении гидродинамического радиуса R_h . Для анализа этих сдвигов были вычислены стоксовские сдвиги $\Delta \nu = \nu_a - \nu_f$ (ν_a, ν_f — частоты максимумов спектров поглощения и флуоресценции соответственно) для различных значений R_h . На рис. 3 (кривая 3) представлена

Рис. 3. Зависимости отношения интенсивностей $\frac{I_3}{I_2}(1, 2)$, определенные из спектров поглощения (1) и флуоресценции (2), стоксовского сдвига $\Delta \nu$ (3) и отношение дипольных моментов $\frac{\mu_e}{\mu_g}$ молекул Φ (4) от гидродинамического радиуса мицелл R_h

зависимость $\Delta \nu$ от R_h для растворов Ф. Из рис. З видно, что с ростом R_h увеличивается стоксовский сдвиг спектров Ф.

Изменение величин стоксовского сдвига спектров указывает на то, что геометрия молекул красителя в возбужденном состоянии отличается от геометрии в основном состоянии. Поэтому при исследовании поведения молекул красителей в мицелле важным является определение изменения дипольного момента молекулы Φ при возбуждении. Для получения информации об изменении дипольного момента Φ в возбужденном состоянии было определено отношение $\frac{\mu_e}{\mu_g}$, где μ_e и μ_g — дипольные моменты молекул красителей в возбужденном состояния состояния состояния состояния состояния и основном состояниях соответственно, по формуле [20]:

$$\frac{\mu_e}{\mu_g} = \frac{m_1 + m_2}{m_1 - m_2},\tag{7}$$

где $m_1 = \frac{\nu_a - \nu_f}{f(\varepsilon, n)}; m_2 = \frac{\nu_a + \nu_f}{f(\varepsilon, n) + 2g(n)}; f(\varepsilon, n) = \frac{2n^2 + 1}{n^2 + 1} \times \left(\frac{\varepsilon - 1}{\varepsilon + 2} - \frac{n^2 - 1}{n^2 + 2}\right) - функция полярности раствори$ $теля; <math>g(n) = \frac{3}{2} \cdot \frac{n^4 - 1}{\left(n^2 + 2\right)^2}; \varepsilon$ — диэлектрическая проницаемость среды; n — показатель преломления среды.

Из экспериментальных значений ν_a и ν_f были определены m_1 и m_2 , а затем отношения $\frac{\mu_e}{\mu_g}$. На рис. 3 (кривая 4) представлены зависимости $\frac{\mu_e}{\mu_g}$ для Φ от R_h мицелл. Из рис. 3 видно, что с увеличением R_h наблюдается рост отношения $\frac{\mu_e}{\mu_g}$.

Изменение размеров обратных мицелл влияет и на среднее время жизни флуоресценции τ внедренных молекул Ф. На рис. 4 (кривая 1) представлена зависимость среднего времени флуоресценции τ от R_h . Из рис. 4 видно, что с ростом R_h среднее время возбужденного состояния Ф увеличивается.

Увеличение размера обратных мицелл приводит к уменьшению эффекта геометрического ограничения молекул Φ , что должно сказываться на значениях степени анизотропии флуоресценции. Были определены значения анизотропии флуоресценции r

Рис. 4. Зависимости τ (1), r (2) и θ (3) от гидродинамического радиуса мицелл R_h

для молекул Φ в обратных мицеллах с различными гидродинамическими радиусами R_h . На рис. 4 (кривая 2) представлена зависимость $r(R_h)$. Из рис. 4 видно, что анизотропия свечения уменьшается с ростом R_h . Но при этом для всех исследованных значений R_h степень анизотропии свечения в водномицеллярных растворах Φ выше значений, полученных в водных растворах (значение степени анизотропии флуоресценции Φ в воде равно 0.09). Это указывает на то, что движение молекул Φ имеет больше ограничений в обратной мицелле, чем в чистой воде. Кроме того, растущее значение анизотропии излучения при малых значениях R_h показывает, что микросреда внутри водного пула обратной мицеллы сильно отличается от объемной воды.

Для установления расположения молекул Φ внутри мицелл сделана оценка вращательной диффузии молекул красителя в зависимости от R_h . Для определения параметров вращательной диффузии люминесцирующих молекул Φ использовалась модифицированная формула Перрена:

$$\frac{1}{r} = \frac{1}{r_0} \left(1 + \frac{\tau}{\theta} \right),\tag{8}$$

где $\theta = \frac{\eta V}{KT}$ — время вращательной релаксации, T — абсолютная температура, η — вязкость раствора, V — объем флуорофора, k — постоянная Больцмана, τ — среднее время жизни возбужденных молекул, r_0 — предельная анизотропия излучения, которая была определена путем измерения анизотропии излучения водных растворов Φ с добавлением сахарозы (r_0 равен 0.31).

Используя экспериментальные значения r, r_0 и τ , для каждого из растворов с помощью (8) было вычислено время вращательной релаксации θ . На рис. 4 (кривая 3) представлена зависимость θ от R_h . В связи с тем, что θ пропорционально вязкости η , наблюдаемое в эксперименте уменьшение θ с ростом гидродинамического радиуса мицеллы R_h связано с уменьшением микровязкости ограниченной водной среды внутри мицеллы. Это происходит при нахождении молекулы Φ в области поверхностной воды (положение В на рис. 1).

ЗАКЛЮЧЕНИЕ

Проведены исследования спектрально-флуоресцентных характеристик молекул флуоресцеина в обратных мицеллах АОТ и размеров мицелл для различных значений степени гидратации w. Установлено, что внедрение молекул красителей в обратные мицеллы вызывает увеличение их гидродинамических радиусов R_h , пропорциональное степени гидратации w.

Из анализа спектров поглощения и флуоресценции молекул Φ в обратных мицеллах установлено, что с ростом R_h увеличивается доля анионной формы красителя в водно-мицеллярном растворе. При этом увеличение размеров мицелл сопровождается ростом

отношения дипольных моментов Φ в возбужденном и основном состояниях $\frac{\mu_e}{\mu_g}$, обусловленное структурной реорганизацией мицелл.

Из измеренных зависимостей среднего времени жизни возбужденного состояния и степени анизотропии флуоресценции Φ было определено время вращательной релаксации θ для различных R_h . Установлено, что θ уменьшается с ростом R_h , что указывает на увеличение микровязкости окружения молекул Φ из-за локализации их в области поверхностной воды мицеллы.

Исследование выполнено при финансовой поддержке РФФИ (грант № 19-32-90123).

СПИСОК ЛИТЕРАТУРЫ

- Dhillon S.K., Porter S.L., Rizk N. et al. //J. Med. Chem. 2020. 63. P. 1328.
- Naranjo A., Arboleda A., Martinez J.D. et al. //American Journal of Ophthalmology. 2019. 208. P. 387.
- Shitomi K., Miyaji H., Miyata S. et al. //Photodiagnosis and Photodynamic Therapy. 2020. 30. P. 101647.
- Vlasova I. M., Polyansky D. V., Saletsky A. M. // Laser Physics Letters. 2007. 4. P. 390.
- Vlasova I. M., Saletsky A. M. // Laser Physics. 2010.
 20. P. 1844.
- Vlasova I. M., Saletsky A. M. // Journal of Molecular Structure. 2009. 936, N 1-3. P. 220.
- 7. Власова И. М., Власов А. А., Кулешова А. А. и др. // ЖФХ. 2020. **94**, № 1. С. 114.
- 8. Волкова О.В., Баранов А.Н., Салецкий А.М. // ЖПС. 2018. **85**, № 3. С. 381.
- 9. Летута С.Н., Кувандыкова А.Ф., Пашкевич С.Н., Салецкий А.М. // ЖХФ. 2013 **87**, № 9. С. 1602.
- Knight A. W., Kalugin N.G, Coker E., Ilgen A. G. // Sci. Rep. 2019. 9. P. 8246.
- Arbeloa E. M., Porcal G. V., Bertolotti S. G., Previtali C. M. // Journal of Photochem. Photobiol. A: Chemistry. 2013. 252. P. 31.
- Peyghami S., Sharifi S., Rakhshanizadeh F., Alizadeh K. // Journal of Molecular Liquids. 2017. 246. P. 157.
- Karimi N., Sharifi S., Sadat S., Seyed P. // Opt. Quant. Electron. 2018. 50. P. 209.
- Vodolazkaya N.A., Kleshchevnikova Ya.A., Mchedlov-Petrossyan N.O. // Journal of Molecular Liquids. 2013. 187. P. 381.
- Shavakandi S. M., Sharifi S. // Opt. Quant. Electron. 2017. 49. P. 26.
- Gerasimova M.A., Tomilin F.N., Malyar E.Ya. et al. //Dyes and Pigments. 2020. 173. P. 107851.
- Potapov A. V., Alekseev D. B., Alekseeva I. G., Saletsky A. M. // Laser Physics Letters. 2007. 4, N 1. P. 61.
- Matsnev M. E., Rusakov V. S. // AIP Conf. Proc. 2012. 1489. P. 178.
- Klonis N., Sawyer W. H. // J. of Fluorescence. 1996. 6, N 3. P. 147.
- Rahdar A., Aliahmad M., Kor A.M., Sahoo D. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019. 210. P. 165.

The Effect of Nanoscale Reverse Micelles on the Photophysical Properties of Fluorescein Molecules

O. I. Volkova^a, A. A. Kuleshova^b, A. M. Saletsky^c

Department of General Physics, Faculty of Physics, Lomonosov Moscow State University. Moscow 119991, Russia. E-mail: ^aoksanavolkova_45@mail.ru, ^bkuleshova@physics.msu.ru, ^csam@physics.msu.ru.

Photophysical processes in water-micellar solutions of fluorescein have been studied using the methods of stationary time-resolved fluorescence spectroscopy and dynamic light scattering. It has been found that the introduction of dye molecules into reverse micelles causes an increase in their hydrodynamic radii R_h , proportional to the degree of hydration w. The absorption and fluorescence spectra, the average lifetime of the excited state t, and the degree of fluorescence anisotropy r of the fluorescein molecules are presented for different values of R_h . It has been found that with the growth of R_h , the fraction of the anionic form of the dye in water-micellar solutions increases. In this case, an increase in the ratio of the dipole moments of the fluorescein molecules in the excited and ground states μ_e/μ_g is observed, due to the structural reorganization of micelles. It has been experimentally established that the rotational relaxation time θ of dye molecules decreases with growing R_h , which indicates an increase in the microviscosity of the environment of the fluorescein molecules due to the localization of dye molecules in the region of surface water in the micelle.

Keywords: fluorescein, micelle, absorption, fluorescence, spectra, fluorescence anisotropy, excited state lifetime. PACS: 78.55.-m.

Received 13 June 2020.

English version: Moscow University Physics Bulletin. 2020. 75, No. 6. Pp. 605-610.

Сведения об авторах

1. Волкова Оксана Игоревна — e-mail: oksanavolkova_45@mail.ru.

2. Кулешова Анна Александровна — канд. физ.-мат. наук, ассистент; e-mail: kuleshova@physics.msu.ru.

3. Салецкий Александр Михайлович — физ.-мат. наук, профессор, зав. кафедрой; e-mail: sam@physics.msu.ru.