ОПТИКА И СПЕКТРОСКОПИЯ. ЛАЗЕРНАЯ ФИЗИКА

Максимальная дальность работы распределенных датчиков на основе когерентных импульсных оптических рефлектометров (ϕ OTDR) и телекоммуникационного волокна с отражательными центрами

Д.Р. Харасов,^{1,2, а} Д.М. Бенгальский,^{1,3} Э.А. Фомиряков,^{1,3}

О.Е. Наний,^{1,2,3} М.А. Бухарин,¹ С.П. Никитин,¹ В.Н. Трещиков¹

¹ ООО «Т8 Сенсор». Россия, 107076, Москва, Краснобогатырская, д. 44, стр. 1.

² Московский физико-технический институт (национальный исследовательский университет),

Физтех-школа радиотехники и компьютерных технологий,

кафедра радиотехники и систем управления.

Россия, 141701, Московская область, г. Долгопрудный, Институтский пер., д. 9. ³ Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра оптики, спектроскопии и физики наносистем,

Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2.

Поступила в редакцию 31.01.2021, после доработки 23.03.2021, принята к публикации 31.03.2021.

Найдено оптимальное расположение наведенных фемтосекундными лазерными импульсами отражательных центров (ОЦ) в телекоммуникационном волокне, обеспечивающее максимальную дальность работы распределенных датчиков на основе когерентных импульсных оптических рефлектометров (ϕ OTDR). Показано, что максимальная дальность работы ϕ OTDR с длительностью зондирующих импульсов 200 нс может быть увеличена на 53 км при использовании волокна с ультранизкими потерями 0.16 дБ/км (ULL) и тем самым доведена до 173 км без использования распределенных усилителей и усилителей с удаленной накачкой. При использовании наиболее распределенных усилителей и усилителей с потерями 0.185 дБ/км (SSMF) дальность работы может быть увеличена на 48 км и доведена до 152 км.

Ключевые слова: когерентный рефлектометр, фазочувствительный оптический рефлектометр, распределенный датчик, волоконно-оптический датчик, точечный отражатель. УДК: 535.3. PACS: 07.60.Hv.

введение

Импульсные фазочувствительные (когерентные) оптические рефлектометры на основе эффекта рэлеевского рассеяния света в оптическом волокне (ϕ OTDR, Φ -OTDR, COTDR) [1] широко используются в качестве распределенных датчиков виброакустических воздействий и температуры (DAS, DVS, DTGS и т.п.) [2, 3].

В качестве чувствительного элемента в ϕ OTDR используется одномодовое телекоммуникационное оптическое волокно, в которое вводят оптические импульсы высококогерентного лазерного излучения длительностью от нескольких десятков до нескольких сотен наносекунд. При распространении вдоль волокна оптический импульс рассеивается на неоднородностях волокна, часть рассеянного излучения распространяется в обратном направлении и достигает начала волокна, где регистрируется с помощью оптического приемника и анализируется.

Дальность работы распределенных датчиков на основе когерентных OTDR — критический параметр, существенно влияющий на диапазон потенциальных применений распределенных датчиков.

Для заданного периода следования зондирующих импульсов (ЗИ) T_p (и соответственно частоты $f_p = T_p^{-1}$) максимальная дальность работы ϕ ОТDR ограничена расстоянием, с которого рассеянный импульс успеет вернуться к началу линии до запуска следующего ЗИ, т.е. $L_{\text{max}} = v_q T_p/2$. Однако для

большинства применений это ограничение не является критическим. Так, для $f_p = 1$ кГц дальность, ограниченная частотой следования ЗИ, составляет $L_{
m max}~pprox~100$ км, а для $f_p~=~500$ Гц-уже 200 км. Более того, в работе [4] показано, что использование частотного мультиплексирования позволяет в 5 раз увеличить частоту зондирования, не уменьшая дальность работы. Поэтому в большинстве практически важных случаев максимальная дальность работы *ф*ОТDR ограничена снижением уровня сигнала обратного рассеяния, вызванного затуханием ЗИ и рассеянного излучения в волокне до критического значения, связанного с уровнем собственных шумов приемной части. При использовании ЗИ длительностью 200 нс, мощностью, ограниченной порогом возникновения нелинейных эффектов, и приемников с оптическим предусилителем дальность работы ϕ OTDR обычно составляет порядка 50 км.

Существует несколько способов увеличения дальности работы ϕ OTDR: использование волокон с низким затуханием (ULL) и с пониженным порогом нелинейных эффектов [5–7]; использование волоконных эрбиевых усилителей с удаленной накачкой (ROPA) [8] и/или распределенных рамановских усилителей на эффекте вынужденного комбинационного усиления [9–12]; использование соединения волокон с последовательно увеличивающимися коэффициентами рэлеевского рассеяния [13]; использование искусственно созданных отражательных центров (ОЦ) [14–21].

^a E-mail: kharasov@phystech.edu

В данной работе предложен и теоретически исследован распределенный датчик виброакустических воздействий на основе ϕ OTDR, в котором в качестве чувствительного элемента используется последовательное соединение участка телекоммуникационного одномодового волокна максимальной допустимой длины с участком модифицированного телекоммуникационного волокна, в котором созданы дополнительные ОЦ, расположение которых оптимизировано для достижения максимальной дальности работы. Рассмотрены волокна с ультранизкими потерями 0.16 дБ/км (ULL) и наиболее распространенные телекоммуникационные волокна с потерями 0.185 дБ/км (SSMF).

1. ПРИНЦИП РАБОТЫ ФОТДЯ И ОПРЕДЕЛЕНИЕ МАКСИМАЛЬНОЙ ДАЛЬНОСТИ

Рассмотрим типичный одноимпульсный рефлектометр, регистрирующий интенсивность обратно рассеянного излучения [10]. Принципиальная схема такого ϕ OTDR показана на рис. 1. Зондирующие импульсы длительностью $\tau_p \approx 200$ нс и формой, близкой к прямоугольной, формируются акустооптическим модулятором (АОМ) из излучения узкополосного лазера, усиливаются волоконным эрбиевым усилителем EDFA до оптимального уровня, ограниченного порогом возникновения нелинейных эффектов (в волокнах ULL и SSMF оптимальная мощность $P_{p} = 150 \text{ мBr} [7]),$ и вводятся через волоконный циркулятор в тестируемое волокно. Обратный сигнал через циркулятор попадает на вход предусилителя EDFA, а затем в оптический приемник и далее в блок получения и обработки данных. Для уменьшения уровня шума усиленного спонтанного излучения (ASE) усилителей EDFA используются оптические фильтры.

Сигнал на выходе оптического приемника (далее рефлектограмма) пропорционален фототоку *I*, который в свою очередь пропорционален сумме оптических мощностей сигнала и шума ASE:

$$I \propto [G \cdot P + P_{ASE}], \tag{1}$$

где P_p — мощность рассеянного излучения на входе в предусилитель EDFA с коэффициентом усиления G, P_{ASE} — мощность ASE. Сигнал, регистрируемый в момент времени t_d после запуска импульса в волокно, однозначно соответствует

Рис. 1. Принципиальная схема ϕ OTDR

Рис. 2. Рефлектограмма фОТDR от начала линии

координате рассеивающей области вдоль волокна $z = v_a t_d/2$. Типичный вид рефлектограммы показан на рис. 2. Изрезанность рефлектограммы связана со случайным распределением неоднородностей показателя преломления волокна (далее рэлеевские центры РЦ) вдоль волокна: обратнорассеянные импульсы от близкорасположенных РЦ складываются между собой со случайными фазами. При наличии внешнего локального воздействия на волокно происходит локальное растяжение волокна, что приводит к тому, что рассеянные от области воздействия волокна импульсы будут складываться с уже изменившимися фазами. Анализируя изменения в последовательности рефлектограмм, можно получить полезную информацию о положении и характере воздействия на волокно, которое, таким образом, выполняет функцию распределенного чувствительного элемента датчика.

На рис. З показана зависимость оптической мощности когерентной рефлектограммы в дБм $p(z) = 10 \lg (P(z), \text{мBt})$ от координаты рассеяния z вдоль

Рис. 3. Рефлектограмма фОТDR вдоль линии 120 км в логарифмическом масштабе

однородного волокна с затуханием $\alpha = 0.185 \text{ дБ/км}$, а также скользящее среднее рефлектограммы $\langle p(z) \rangle$ вдоль волокна. Уровни оптической мощности приведены ко входу/выходу в волоконную линию. Средняя мощность p_0 , рассеянная от области, непосредственно примыкающей к началу волокна, вычисляется следующим образом:

$$p_0(\tau_p) = p_p + r_p(\tau_p),$$
 (2)

где p_p = $10 \lg(P_p, \mathrm{MBt})$ — мощность ЗИ в дБм на входе в волокне, $r_p(\tau_p) = r_0 + 10 \lg(\tau_p, \mathrm{Hc})$ коэффициент обратного рассеяния (в децибелах) для ЗИ длительностью au_p , а r_0 — коэффициент обратного рассеяния для импульса длительностью 1 нс. Как правило, для телекоммуникационных волокон стандарта G.652.D (например, Corning® SMF-28^{тм} или OFC AllWave® Zero Water Peak) на длине волны 1.55 мкм $r_0 \approx -82$ дБ/нс (см. [22, с. 78]). Таким образом, для импульса мощностью 150 мВт и длительностью 200 нс $r_p = -59$ дБ, $p_0 = -37.2$ дБм. Дополнительно на рис. 3 показана теоретическая зависимость среднего уровня рефлектограммы $p_{th}(z) = p_0 - 2\alpha z$, с помощью которой видно, что на расстояниях более 80 км скользящее среднее рефлектограммы выше реального среднего уровня оптической мощности $p_{th}(z) < \langle p(z) \rangle$. Это связано с тем, что детектируемый сигнал не опускается ниже уровня шума приемной части $\phi {
m OTDR}$ $p_{
m noise}$ = -75.7 дБм, который находится на $\Delta p_0 = 38.5$ дБ ниже уровня p_0 . Из линейной зависимости видно, что средний уровень рефлектограммы достигает уровня шума на 104 км от начала волокна, при этом вычисленное скользящее среднее рефлектограммы в этой точке на 3 дБ выше уровня шума. В данной работе будет анализироваться максимальная дальность L, под которой будет подразумеваться расстояние вдоль волокна, на котором средняя мощность оптического сигнала $\phi OTDR$ превышает уровень собственный шумов p_{noise} . Для исследуемого ϕ OTDR с SSMF волокном с $\alpha = 0.185$ дБ/км $L = \Delta p_0/(2\alpha) = 104$ км, а в случае использования ULL волокна с потерями $\alpha = 0.16$ дБ/км L = 120 км.

Важной характеристикой сигнала ϕ OTDR является видность рефлектограммы V, которая характеризует изрезанность когерентной рефлектограммы [23]. Она вычисляется как отношение разности максимума P_{max} и минимума P_{min} рефлектограммы к их сумме вдоль большого пространственного окна. В верхней части рис. 3 показана видность, вычисленная в скользящем окне 1 км.

Представленная выше схема ϕ OTDR позволяет регистрировать и анализировать только сигнал интенсивности, из чего вытекает основной недостаток: восстановить форму сигнала внешнего воздействия на чувствительное волокно можно только в областях волокна, где наблюдается линейный отклик [21]. Однако существуют методы, с помощью которых можно восстановить форму внешнего воздействия, измеряя фазу рассеянного излучения. К таким методам относятся: использование одиночных ЗИ и неравноплечного интерферометра Маха—Цендера (ИМЦ) с 3 × 3-ответвителем в приемной части [20, 24, 25], двухимпульсные схемы с фазовой [3, 26–28] или частотной [29, 30] диверсификацией и другие методы [31].

Как было сказано выше, чтобы увеличить оптическую мощность, приходящую на вход оптического приемника с дальнего конца линии, а как следствие — дальность работы ϕ OTDR, можно увеличить обратное отражение создав в чувствительном телекоммуникационном волокне отражательные центры (ОЦ). ОЦ могут представлять из себя волоконные брэгговские решетки (ВБР) или точечные отражатели (ТО), записанные с помощью ультрафиолетового лазера или лазера с ультракороткими импульсами [14, 15]. Для расширения спектра отражения ВБР делают либо чирпированными (ЧВБР)[17-21], либо короткими по длине [16]. В работе [21] была продемонстрирована работа ϕ OTDR на участке волокна с записанным массивом ЧВБР, удаленном на 140 км от начала волоконной линии. В работе [19] были продемонстрированы похожие результаты: работа DAS на участке волокна AcoustiSens производства OFS, удаленного на 125 км от начала линии, состоящего из ULL и SSMF. Волокно AcoustiSens изготавливается путем записи в волокне SSMF массива ЧВБР и характеризуется коэффициентом обратного отражения, большим, чем рэллевское обратное рассеяние в SSMF, на $\Delta r_{\text{ЧВБР}} = 10-15$ дБ, при этом погонное затухание также несколько увеличивается: $\alpha_{\rm ЧВБР} = 0.4 - 0.7$ дБ/км [17-19]. Максимальное увеличение дальности работы ϕ OTDR с использованием этого волокна в конце линии можно рассчитать следующим образом:

$$\Delta L_{\text{ЧВБР}} = \Delta r_{\text{ЧВБР}} / (2\alpha_{\text{ЧВБР}}). \tag{3}$$

С учетом того факта, что увеличение количества ЧВБР на единицу длины волокна влечет за собой увеличение коэффициента отражения и, соответственно, потери, $\Delta L_{\rm ЧВБР}$ можно оценить как 10.7–12.5 км.

Использование ТО в качестве ОЦ в волокне также является перспективным методом увеличения дальности работы ϕ OTDR. Внешние воздействия или изменение температуры вызывают изменение взаимного расположения ТО в волокне, что, в свою очередь, будет соответствовать изменению сигнала ϕ OTDR на соответствующем участке. В отличие от массива ВБР коэффициент отражения ТО не зависит от длины волны используемого в ϕ OTDR лазера, что является несомненным преимуществом. В [15] показано, что на сегодняшний день с помощью фемтосекундного (фс) лазера можно записывать в волокне ТО с коэффициентом обратного отражения $r_{TO} = -53$ дБ на 1 ТО. Это значение r_{TO} , не зависящее от длительности ЗИ, надо сравнивать с коэффициентом обратного рэлеевского рассеяния r_p, зависящего от длительности ЗИ. Для рассматриваемого ϕ OTDR с длительностью ЗИ $au_p \approx 200$ нс r_p = -59 дБ, что на Δr_{TO} = r_{TO} - r_p = 6 дБ меньше коэффициента отражения от одиночного ТО. Также в той же работе показано, что при записи ТО вносимые дополнительные потери составляют $\alpha_{TO} \approx 10^{-4}$ дБ на 1 ТО.

Оценим для TO для коэффициент захвата, который по определению равняется отношению обратноотраженной мощности p_{back} к потерянной мощности p_{loss} , что эквиваленто отношению коэффициента обратного отражения r к коэффициенту потерь A:

$$k = p_{\text{back}} - p_{\text{loss}} = r - A. \tag{4}$$

Если вносимое ТО затухание $\alpha_{TO} = 10^{-4}$ дБ, то соответствующий коэффициент потерь $A_{TO} = 10 \log \left(1 - 10^{-\alpha_{TO}/10}\right) \approx -46$ дБ, а коэффициент захвата $k_{TO} = r_{TO} - A_{TO} \approx -7$ дБ. Для рэлеевского рассеяния в одномодовом волокне коэффициент захвата k_0 не превышает 0.2%, или -27 дБ [32], что гораздо меньше, чем для ТО.

Это означает, что излучение, рассеянное на TO, гораздо более направлено назад, чем излучение, рассеянное на рэлеевских центрах.

Рассмотрим процесс формирования рефлектограммы ϕ OTDR в ОЦ-волокне с записанными TO. Пусть в некотором сегменте чувствительного волокна ϕ OTDR находятся два ОЦ, расположенных на расстоянии $l_{\rm OU}$. В случае зондирования волокна одиночными ЗИ отраженные от этих ОЦ импульсы будут интерферировать между собой, только если расстояние между ОЦ меньше полудлины импульса, т. е. $l_{\rm OU} \leq l_p/2$, а расстояние, на котором интерферируют, равняется $l_{\rm инт} = l_p - 2l_{\rm OU}$ (рис. 4). Оптимальным с точки зрения достижения максимальной видности интерференционной картины и уменьшения вносимых потерь является расположение этих ОЦ

Рис. 4. Принцип формирования интерференционного сигнала фОТDR в волокие с ОЦ

на расстоянии $l_{\rm OU}^{\rm ont} = l_p/4$. Например, для исследуемого ϕ OTDR с длительностью ЗИ $\tau_p \approx 200$ нс $l_{\rm OU}^{\rm ont} \approx 10$ м. При более частом расположении ОЦ в волокне не только пара соседних отраженных импульсов начинает интерферировать между собой, но и другие отраженные импульсы от ОЦ из области $l_p/2$.

При интерференции отраженные от ТО импульсы складываются между собой с относительной фазой $\Delta arphi = k_p 2 l_{
m OII} \ {
m mod} \ 2\pi,$ где $k_p = 2\pi n_f/\lambda$ — волновое число, напрямую связанное с ценральной длиной волны (частотой) ЗИ λ в вакууме, n_f — показатель преломления волокна, mod – обозначение остатка от деления. В [33] показано, что с помощью прецизионного линейного привода можно контролировать расстояние между точками фокусировки фемтосекундного лазера с точностью $\delta l \approx 0.2$ мкм, что приводит к разбросу относительной фазы $\delta \varphi \approx 0.4$ рад для $\lambda \approx 1.55$ мкм. В случае, когда $\delta l \ge 0.75$ мкм, отраженные от ТО импульсы будут складываться со случайными сдвигами фаз аналогично сложению парциальных волн от рэлеевских центров рассеянию в волокне. Стоит отметить, что датчики на основе ϕ OTDR с ОЦ-волокном правильнее называть квази-распределенными, несмотря на то, что их пространственная разрешающая способность такая же, как и у ϕ OTDR с телекоммуникационным волокном.

2. ИСПОЛЬЗОВАНИЕ ВОЛОКНА С ТО, ЗАПИСАННЫМИ КОМПАКТНЫМИ ГРУППАМИ, ДЛЯ УВЕЛИЧЕНИЯ ДАЛЬНОСТИ РАБОТЫ ФОТDR

Для увеличения коэффициент обратного отражения r в волокне с помощью фемтосекундного лазера можно записывать ТО компактными группами по *n* штук (далее ГТО) через одинаковое расстояние (например, 1 мм). Из-за неточности положений, записанных ГТО, интегральный коэффициент отражения от такой компактной группы будет представлять собой случайную величину, однако в среднем интегральный коэффициент отражения от ГТО прямо пропорционален количеству ТО в группе. С увеличением количества ТО в компактной группе также возрастают вносимые ГТО потери. Поэтому для достижения максимальной дальности работы ϕ OTDR требуется оптимизировать зависимость количества ТО в группе от координаты ГТО вдоль волокна. Дальнейшая оптимизация волокна с ОЦ проводится так, чтобы обеспечить минимально достаточный уровень мощности p_{\min} рассеянного/отраженного оптического излучения, дошедшего до фОТDR. В дальнейших расчетах дальности будем считать, что $p_{\min} = p_{\text{noise}}$.

Как показано в работе [13], увеличить дальность работы рефлектометра можно, если после волокна с малым затуханием максимально возможной длины установить волокно, обладающее более высоким коэффициентом обратного рассеяния, пусть и с более высоким коэффициентом затухания. Например, ОЦ-волокно с увеличенным за счет создания ГТО коэффициентом обратного отражения следует располагать после одномодового телекоммуникационного волокна (SSMF или ULL) в точке z_0 , где уровень сигнала достигает p_{min} .

При использовании совместно с телекоммуникационным волокном дополнительного участка ОЦволокна уровнем сигнала обратного рассеяния можно управлять с помощью регулирования числа ТО в компактной группе и таким образом изменяя коэффициент отражения от ГТО. Поскольку при увеличении коэффициента отражения от ГТО неизбежно растут потери, то существует оптимальное значение коэффициента отражения, обеспечивающее максимальную дальность.

2.1. Максимальная дальность при использовании ОЦ-волокна с постоянным количеством ТО в группе

Найдем оптимальное количество ТО в компактных группах, расположенных в ОЦ-волокне на расстоянии $l_{\rm OII} = l_p/4$ друг от друга. Как было показано ранее, ОЦ-волокно следует располагать после телекоммуникационного волокна длиной z₀, где уровень сигнала принимает минимально допустимый уровень p_{min}. При установке ОЦ-волокна после линии из телекомуникационного волокна (рис. 5, а), в самом начале ОЦ-волокна средняя мощность отраженного оптического сигнала p_{cp} увеличится на величину $\Delta p_{\rm cp \ 1} = \Delta r_{TO} + 10 \lg(n_1)$ (дБ), где n_1 — количество ТО в компактной группе. При прохождении вдоль ОЦ-волокна мощность отраженного сигнала уменьшается как за счет обычных потерь в волокне (на $\Delta p_{\rm cp\ 2}$ = $-2lpha\Delta z$, где Δz = $z-z_0$ — расстояние вдоль в ОЦ-волокна, а 2 — прохождение

Рис. 5. ϕ OTDR с линией из SSMF/ULL и OЦ-волокна a — с одинаковым количеством TO в группе вдоль всего ОЦ-волокна (1 сегмент), δ — из двух сегментов с разным количеством TO в группе в каждом сегменте, s — из Nсегментов с разным количеством TO в группе в каждом сегменте

Рис. 6. Зависимость увеличения дальности работы фОТDR в линии из обычного волокна и одного сегмента ОЦ-волокна от количества ТО в группе

в обе стороны), так и за счет потерь на ГТО $\Delta p_{\rm cp\ 3}(\Delta z) = -2 \alpha_{TO} n_1 \frac{\Delta z}{l_{\rm out}}$, где $\frac{\Delta z}{l_{\rm out}}$ — суммарное количество ГТО, пройденных ЗИ вдоль ОЦ-волокна до точки Δz . Тогда зависимость средней мощности отраженного оптического сигнала от пройденного в ОЦ-волокне расстояния $p_{\rm cp}(\Delta z)$ описывается следующим выражением:

$$p_{\rm cp} (\Delta z) = p_{\rm min} + p_{\rm cp \ 1} + p_{\rm cp \ 2} (\Delta z) + p_{\rm cp \ 3} (\Delta z) =$$

= $p_{\rm min} + \Delta r_{TO} + 10 \, {\rm lg}(n_1) - 2\alpha \Delta z - 2\alpha_{TO} \frac{n_1}{l_{\rm OII}} \Delta z.$ (5)

На дальнем конце ОЦ-волокна ($\Delta z = l_1$) мощность отраженного сигнала должна быть не меньше минимальной $p_{\rm cp}(l_1) = p_{\rm min}$. Подставив это в (5), можно получить зависимость увеличения дальности работы когерентного рефлектометра от количества TO в группе ΔL от n_1 :

$$\Delta L = l_1(n_1) = \frac{\Delta r_{TO} + 10 \lg n_1}{2 \left[\alpha + \alpha \frac{n_1}{l_{\text{OII}}} \right]}.$$
 (6)

На рис. 6 показана зависимость $\Delta L(n_1)$ для ОЦволокна на базе SSMF с потерями $\alpha = 0.185$ дБ/км и на базе ULL волокна с $\alpha = 0.16$ дБ/км. Из рисунка видно, что для ОЦ-волокна на базе SSMF оптимальное количество центров составляет 8 TO на 1 компактную группу, а для ОЦ-волокна на базе ULL — 7; при этом увеличение дальности составит 28 км и 31 км соответственно.

2.2. Нахождение максимальной дальности при использовании ОЦ-волокон из 2 и более сегментов

Дальность работы можно увеличить на бо́льшую величину с помощью дополнительных сегментов ОЦ-волокна с увеличенным количеством ТО (см. рис. 5, δ). Рассмотрим зависимость мощности обратного сигнала во втором сегменте ОЦ-волокна $\Delta z \ l_1$:

$$p(\Delta z) = p_{\min} + \Delta r_{TO} + 10 \lg(n_2) - 2\alpha \Delta z - 2\alpha_{TO} \frac{n_1}{l_{OII}} l_1 - 2\alpha_{TO} \frac{n_2}{l_{OII}} (\Delta z - l_1), \quad (7)$$

где n_2 — количество ТО в ОЦ во втором сегменте.

Таблица. Оптимальные параметры ОЦ-волокна из N-сегментов, при которых ΔL максимальна для данного N

Количество	Набор	Длины сегментов	Макс. увеличение
сегментов N	n_1,\ldots,n_N	$l_1,\ldots,l_N,$ км	дальности ΔL , км
1	7	31	31
2	2, 18	25, 14	39
3	1, 8, 36	18, 19, 6	43
4	1, 6, 19, 68	18, 18, 7, 3	46

Здесь аналогично (5) второе и третье слагаемые характеризуют увеличение среднего коэффициента обратного рассеяния во втором сегменте, четвертое — обычные потери в волокне, а предпоследнее и последнее слагаемые характеризует потери, вносимые ГТО, при прохождении первого сегмента и второго сегмента в обе стороны. Для того, чтобы найти длину второго сегмента l_2 , в (7) вместо $\lg(n_2)$ необходимо подставить тождественное $\lg(n_2/n_1) + \lg(n_1)$, а вместо l_1 — выражение (6). С учетом $p_{cp}(l_1 + l_2) = p_{min}$ получаем

$$l_2(n_1, n_2) = \frac{10 \lg(n_2/n_1)}{2 \left[\alpha + \alpha_{TO} \frac{n_2}{l_{OII}}\right]},$$
(8)

а общее увеличение дальности $\Delta L(n_1, n_2) = l_1(n_1) + l_2(n_1, n_2)$. Для максимального увеличения дальности работы с использованием ОЦ-волокна требуется найти оптимальный набор $\{n_1, n_2\}$ количества ТО в первом и втором сегментах, при котором $\Delta L(n_1, n_2)$ достигает максимума.

Аналогичным образом можно вычислить ΔL для ОЦ-волокна из *N*-сегментов (см. рис. 5, *в*):

$$\Delta L(n_1,\ldots,n_N) = \sum_{i=1}^N l_i \to \max_{\{n_1,\ldots,n_N\}},$$
 (9)

где l_i — длина *i*-го сегмента

$$l_{i} = \begin{cases} \frac{\Delta r_{TO} + 10 \lg n_{1}}{2 \left[\alpha + \alpha_{TO} \frac{n_{1}}{l_{\text{OII}}} \right]}, & i = 1, \\ \frac{10 \lg (n_{i}/n_{i-1})}{2 \left[\alpha + \alpha_{TO} \frac{n_{i}}{l_{\text{OII}}} \right]}, & i > 1. \end{cases}$$
(10)

Для малого Nоптимального набора поиск $\{n_1,\ldots,n_N\}$ можно осуществить перебором. результаты расчетов B таблице приведены оптимальных $\{n_1, \ldots, n_N\}$, $\{l_1, \ldots, l_N\}$, ΔL , для N = 1-4 для ОЦ-волокна на основе ULL с $\alpha = 0.16$ дБ/км, а на рис. 7 — соответствующие зависимости среднего уровня $p_{cp}(z)$ для N = 0(т. е. без ТО), 1 и 4. В расчетах n_i было ограничено $n_{\rm max} = 100.$

2.3. Нахождение максимальной дальности при использовании ОЦ-волокна с непрерывно оптимизируемыми коэффициентами отражения

Однако с увеличением N время поиска оптимального $\{n_1, \ldots, n_N\}$ растет экспоненциально. Существует также альтернативный итеративный подход в оптимизации конфигурации ОЦ-волокна. В ОЦволокне можно увеличивать n(z) на 1 в тех точках

Рис. 7. Зависимость среднего уровня рефлектограммы в линии из ULL и ОЦ-волокна с оптимизированным количеством TO в каждом сегменте $\{n_1 \dots n_N\}$ для различного числа сегментов N = 0 (т. е. без TO), 1 и 4

волокна, где p_{cp} опускается ниже уровня p_{\min} . Длины сегментов можно вычислить с помощью (10) с использованием $n_1 = 1$ для первого сегмента, а для всех последующих сегментов $n_i = n_{i-1} + 1$.

На рис. 8, *а* показаны полученные таким подходом оптимальные зависимости $n(\Delta z)$. Видно, что для $n \leq n_{\max} = 100$ максимальное увеличение дальности ΔL для ULL достигает 53 км! Стоит отметить, что зависимость оптимального числа ТО в ГТО от координаты $n(\Delta z)$ можно получить аналитически. Действительно, если продифференцировать (7) по Δz и приравнять производную к нулю $p_{cp}'(\Delta z) = 0$, то получится

$$10[\lg n(\Delta z)]' - 2\left[\alpha + \frac{\alpha}{l_{\text{OU}}}n'(\Delta z)\right] = 0.$$
(11)

Используя начальное условие $n(l_1) = 1$, получаем решение:

$$n(\Delta z) = \frac{10^{\frac{2\alpha}{10}(\Delta z - l_1)}}{1 + \frac{\alpha_{70}}{\alpha} \frac{1}{l_{011}} \left(1 - 10^{\frac{2\alpha}{10}(\Delta z - l_1)}\right)},$$
 (12)

которое с учетом дискретности n совпадает с решением, полученным итеративным методом (см. рис. 8, a). На рис. 8, δ показаны средняя оптическая мощность рефлектограммы в линии из SSMFи ULL-волокон с дополнительными ОЦ-волокнами, в котором количество ТО в группе соотвествует рис. 8, a.

Рис. 8. Зависимости а — количества ТО в группе от расстояния вдоль ОЦ-волокна и б — средней мощности рефлектограммы, полученные с помощью итеративного и аналитического подходов, вдоль линии из телекомуникационного и ОЦ-волокон

Рис. 9. Расчетное теоретическое максимальное увеличение дальности работы ϕ OTDR при неограниченном ($n_{\max} = \infty$) и ограниченном ($n_{\max} = 100$) количествах ТО в компактной группе

Из (12) можно получить обратную зависимость $\Delta z\left(n
ight)$ и найти предел увеличения дальности:

$$\Delta L_{\max} \equiv \lim_{n \to +\infty} \Delta z(n) =$$

$$= \frac{1}{2\alpha} \left(\Delta r_{TO} \left[1 + \frac{\alpha_{TO}}{\alpha} \frac{1}{l_{\text{OII}}} \right]^{-1} + 10 \lg \left[1 + \frac{\alpha}{\alpha_{TO}} \frac{l_{\text{OII}}}{1} \right] \right). \tag{13}$$

На рис. 9 показаны расчетные теоретические значения предела увеличения дальности при ограниченном ($n \leq n_{\max} = 100$) и неограниченном ($n \to +\infty$) и количестве ТО в группе: для ULL $\alpha = 0.16$ дБ/км ΔL_{\max} соответственно равняется 53 и 56 км, а для SSMF с $\alpha = 0.185$ дБ/км — 48 и 50 км.

ЗАКЛЮЧЕНИЕ

Результаты проведенных исследований показывают перспективность использования специального волокна с ГТО в качестве ОЦ для увеличения дальности работы распределенных датчиков виброакустических воздействий на основе ϕ OTDR. Проведена оптимизация расположения ОЦ в волокне с целью максимального увеличения дальности работы ϕ OTDR. Теоретически показано, что волокна с записанными периодическими ОЦ на основе ТО, расположенными компактными группами, позволяют существенно увеличить дальность: на величину до 56 км для волокон с ультранизкими потерями lpha~pprox~0.16 дБ/км км и на величину до 50 км для наиболее распространенного волокна с потерями $\alpha \approx 0.185$ дБ/км. Предложенные алгоритмы оптимизации параметров лазерно-модифицированного волокна с ОЦ можно использовать для увеличения дальности работы любых типов ϕ OTDR, любых типов ОЦ и способов их записи.

СПИСОК ЛИТЕРАТУРЫ

- Shatalin S. V., Treschikov V. N., Rogers A. J. // Appl. Opt. 1998. 37, N 24. P. 5600.
- 2. *Hartog A. H. //* An introduction to distributed optical fibre sensors. 2017.
- Nikitin S. P., Kuzmenkov A. I., Gorbulenko V. V. et al. // Laser Phys. 2018. 28, N 8. 085107.
- Chen D., Liu Q., Fan X., He Z. // J. of Lightwave Technol. 2017. 35, N 10. P. 2037.
- 5. *Starykh D., Akopov S., Kharasov D.* et al. // IEEE Photonics Technol. Lett. 2019. **31**, N 22. P. 1799.
- Babin S. A., Ismagulov A. E., Podivilov E. V. et al. // Laser Phys. 2010. 20, N 2. P. 334.
- Nikitin S. P., Ulanovskiy P. I., Kuzmenkov A. I. et al. // Laser Phys. 2016. 26, N 10. 105106.
- van Putten L. D., Masoudi A., Brambilla G. // Opt. Lett. 2019. 44, N 24. P. 5925.
- Kharasov D. R., Nanii O. E., Nikitin S. P., Treschikov V. N. // 2018 International Conference Laser Optics (ICLO). IEEE. 2018. P. 285.
- Kharasov D. R., Fomiryakov E. A., Nikitin S. P. et al. // 2020 International Conference Laser Optics (ICLO). IEEE. 2020. P. 1.
- Peng F., Wu H., Jia X. et al. // Opt. Express. 2014. 22, N 11. P. 13804.
- Wang Z. N., Zeng J. J., Li J. et al. // Opt. Lett. 2014. 39, N 20. P. 5866.
- Нестеров Е. Т., Трещиков В.Н, Озеров А. Ж. и др. // Письма в Журнал технической физики. 2011. 37, № 9. Р. 55.

- Hicke K., Eisermann R., Chruscicki S. // Sensors. 2019.
 19, N 19. P. 4114.
- 15. *Redding B., Murray M.J., Donko A.* et al. // Opt. Express. 2020. **28**, N 10. P. 14638.
- Liu T., Wang F., Zhang X. et al. // Optical Engineering. 2017. 56, N 8. 084104.
- 17. Handerek V. A., Karimi M., Nkansah A. et al. // Optical Fiber Sensors. Optical Society of America. 2018. TuC5.
- Westbrook P. S., Feder K. S., Ortiz R. M. et al. // 2017 25th Optical Fiber Sensors Conference (OFS). IEEE. 2017. P. 1.
- Cedilnik G., Lees G., Schmidt P.E. et al. // IEEE Sens. Lett. 2019. 3, N 3. P. 1.
- 20. Masoudi A., Beresna M., Brambilla G. // Opt. Lett. 2021. 46, N 3. P. 552.
- 21. Харасов Д. Р., Бенгальский Д. М., Вяткин М. Ю. и др. // Квантовая электрон. 2020. **50**, № 5. С. 510. (*Kharasov D. R., Bengalskii D. M., Vyatkin M. Y.* et al. // Quantum Electron. 2020. **50**, N 5. P. 510.)
- 22. Листвин А.В., Листвин В.Н. // Рефлектометрия оптических волокон. 2005.
- 23. Fernández-Ruiz M. A., Martins H. F., Pastor-Graells J. et al. // Opt. Lett. 2016. **50**, N 24. P. 5756.

- 24. Posey R., Johnson G.A., Vohra S.T. // Electronics Letters. 2000. **36**, N 20. P. 1688.
- 25. *Masoudi A., Belal M., Newson T.P. //* Measurement Science and Technology. 2013. **24**, N 8. 085204.
- 26. Alekseev A. E., Vdovenko V. S., Gorshkov B. G. et al. // Laser Phys. 2014. **24**, N 11. 115106.
- Лукашова Т.О., Наний О.Е., Никитин С.П., Трещиков В.Н. // Квантовая электрон. 2020. 50, № 9.
 С. 882. (Lukashova T.O., Nanii O.E., Nikitin S.P., Treshchikov V.N. // Quantum Electron. 2020. 50, N 9.
 P. 882.)
- Бенгальский Д. М., Харасов Д. Р., Фомиярков Э. А. и др. // Квантовая электрон. 2021. 51, № 2. С. 175. (Bengalskii D. M., Kharasov D. R., Fomiryakov E. A. et al. // Quantum Electron. 2021. 51, N 2. P. 175.)
- 29. Alekseev A. E., Vdovenko V. S., Gorshkov B. G. et al. // Laser Phys. 2015. 25, N 6. 065101.
- Ju Z., Yu Z., Hou Q. et al. // Appl. Opt. 2020. 59, N 7. P. 1864.
- 31. Muanenda Y. // Journal of Sensors. 2018. 3897873.
- 32. Nakazawa M. // JOSA. 1983. 73, N 9. P. 1175.
- Wolf A., Dostovalov A., Bronnikov K., Babin S. // Opt. Express. 2019. 27, N 10. P. 13978.

The Maximum Operating Range of a Distributed Sensor Based on a Phase-Sensitive Optical Time-Domain Reflectometer Utilizing Telecommunication Fiber with Reflective Centers

D. R. Kharasov^{1,2,a}, D. M. Bengalskii^{1,3}, E. A. Fomiryakov^{1,3}, O. E. Nanii^{1,2,3}, M. A. Bukharin¹, S. P. Nikitin¹, V. N. Treshchikov¹

¹T8 Sensor Ltd, Moscow 107076, Russia.

²Department of Radio Engineering and Control Systems, Phystech School of Radio Engineering and Computer Technology, Moscow Institute of Physics and Technology. Moscow Region, Dolgoprudny 141701, Russia. ³Department of Optics, Spectroscopy, and Physics of Nanosystems, Faculty of Physics, Lomonosov Moscow State University. Moscow 119991, Russia. E-mail: ^akharasov@phystech.edu.

An optimal arrangement of point reflectors inscribed by femtosecond laser pulses in a standard telecommunication fiber is found, which provides the maximum operating range of distributed sensors based on phase-sensitive optical time-domain reflectometers (ϕ OTDRs). It is shown that the operating distance of an ϕ OTDR utilizing probe pulses with a duration of 200 ns can be increased by 53 km using ultra-low-loss fiber with an attenuation of 0.16 dB/km, thereby extending it to 173 km without using distributed, remotely pumped, or in-line amplifiers. When using the most widespread standard telecom fiber with an attenuation of 0.185 dB/km, the operating distance can be increased by 48 km (up to 152 km total).

Keywords: coherent reflectometer, phase-sensitive optical reflectometer, distributed sensor, fiber-optic sensor, point reflector. PACS: 07.60.Hv.

Received 31 January 2021.

English version: Moscow University Physics Bulletin. 2021. 76, No. 3. Pp. 167–175.

Сведения об авторах

- 1. Харасов Данил Равильевич вед. инженер; e-mail: kharasov@phystech.edu.
- 2. Бенгальский Данил Михайлович инженер-исследователь 3 категории, студент магистратуры; e-mail: bengalskiy@t8.ru.
- 3. Фомиряков Эдгард Андреевич инженер-исследователь 2 категории, аспирант; e-mail: fomiryakov@t8.ru.
- 4. Наний Олег Евгеньевич доктор физ.-мат. наук, профессор, нач. научно-исследовательского отдела; e-mail: naniy@t8.ru.
- 5. Бухарин Михаил Андреевич канд. физ.-мат. наук, зам. ген. директора; e-mail: buharin@t8.ru.
- 6. Никитин Сергей Петрович канд. физ.-мат. наук, руководитель научной группы; e-mail: nikitin@t8.ru.
- 7. Трещиков Владимир Николаевич канд. физ.-мат. наук, ген. директор; e-mail: vt@t8.ru.