74-я международная конференция по ядерной физике «ЯДРО-2024: Фундаментальные вопросы и приложения»

Радиальная зависимость эффективной массы нуклонов и свойства основного состояния магических ядер

Д. Ю. Смольянников,^{1, *} Н. Н. Арсеньев,^{1, †} А. П. Северюхин^{1,2,‡}

¹Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н.Н. Боголюбова

Россия, 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, д. 6

²Государственный университет «Дубна»

Россия, 141982, г. Дубна, Московской обл., ул. Университетская, д. 19

(Поступила в редакцию 05.12.2024; после доработки 23.12.2024; подписана в печать 25.12.2024)

В рамках самосогласованного подхода Хартри–Фока на базе функционала плотности энергии типа Скирма изучены вклады различных слагаемых в эффективную массу нуклона. Добавлены слагаемые, влияющие на эффективную массу нуклона на поверхности ядра, и проанализировано их влияние на свойства основного состояния магических ядер ¹⁶O, ^{40,48}Ca, ^{56,78}Ni, ^{100,132}Sn и ²⁰⁸Pb: одночастичный спектр, энергия связи и зарядовый радиус. Обнаружено, что радиальная зависимость эффективной массы нуклонов влияет на плотности нуклонов и схему одночастичных уровней вблизи поверхности Ферми. Предложены два новых набора параметров функционала плотности энергии.

PACS: 21.10.-k, 21.30.-x, 21.60.Jz. УДК: 539.143.

Ключевые слова: функционал плотности энергии, метод Хартри-Фока, эффективная масса нуклона.

DOI: 10.55959/MSU0579-9392.80.2530206

введение

Разработка нового поколения летекторов и применение пучков радиоактивных атомных ядер способствовали быстрому накоплению обширной экспериментальной информации в последние годы. Новые экспериментальные установки DRIBs в Объединенном институте ядерных исследований в г. Дубна (РФ), ИНОК в Национальном центре физики и математики г. Саров ($P\Phi$), FAIR в Центре по изучению тяжелых ионов в г. Дармштадт (Германия) и RIBF в Институте физико-химических исследований в г. Вако (Япония) значительно расширяют возможности синтеза ядер, находящихся вдали от области стабильности, и способствуют исследованию короткоживущих ядер и нестабильных ядерных систем в лабораторных условиях. Изучение таких ядер имеет ключевое значение для понимания процессов нуклеосинтеза в звездах и распространенности элементов во Вселенной [1, 2]. Для анализа экспериментальных данных и разработки новых экспериментов необходимо совершенствование теоретических подходов.

В настоящее время теоретические исследования структуры атомных ядер в основном сосредоточены на разработке методов в рамках теории многих тел, рассматривающей ядро как конечную ферми-систему взаимодействующих нуклонов [3, 4]. Одним из наиболее успешных теоретиче-

ских подходов является самосогласованный метод Хартри-Фока (ХФ) на базе функционала плотности энергии (ФПЭ) Скирма [5, 6]. Этот метод обеспечивает достаточно точное описание характерных свойств атомного ядра, таких как энергия связи, зарядовый радиус, энергии отрыва одного или двух нуклонов, а также спин-орбитальное расщепление, не требуя при этом введения новых параметров при переходе от одного ядра к другому [3, 7]. Однако подходы, базирующиеся на ФПЭ Скирма, сталкиваются с принципиальной проблемой описания плотности одночастичных состояний вблизи поверхности Ферми. Как было показано в [8, 9], введение слагаемых, влияющих на радиальную зависимость эффективной массы нуклона на поверхности ядра, приводит к увеличению плотности одночастичных уровней вблизи поверхности Ферми. Следует отметить, что усиление этой радиальной зависимости негативно сказывается на точности описания энергии связи атомного ядра. В настоящей работе представлены новые параметризации функционала, которые корректно описывают энергии связи магических ядрах ¹⁶О, ^{40,48}Са, ^{56,78}Ni, ^{100,132}Sn и ²⁰⁸Pb, а также их зарядовые радиусы. Изучение характеристик основных состояний атомных ядер предоставляет уникальную возможность установления ограничений на выбор параметров ядерного функционала плотности.

 $^{^{\}ast}$ E-mail: d
smoliannikov@theor.jinr.ru

 $^{^\}dagger$ E-mail: arsenev@theor.jinr.ru

[‡] E-mail: sever@theor.jinr.ru

1. ОБСУЖДЕНИЕ МЕТОДА И РЕЗУЛЬТАТЫ РАСЧЕТОВ

Начнем обсуждение с того, что запишем оригинальный функционал Скирма в следущем виде [3]:

$$\mathcal{H}_{\mathrm{Sky}}(\mathbf{r}) = \frac{\hbar^2}{2m} \tau_0 + \sum_{t=0,1} \left[C_t^{\rho}(\rho_0) \rho_t^2 + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\tau} \rho_t \tau_t + \frac{1}{2} C_t^J J_t^2 + C_t^{\nabla J} \rho_t \nabla \cdot \mathbf{J}_t \right], \quad (1)$$

где индекс t = 0,1 обозначает изоскалярную и изовекторную части соответствующих плотностей $\rho_0(r) = \rho_{\nu}(r) + \rho_{\pi}(r)$ и $\rho_1(r) = \rho_{\nu}(r) - \rho_{\pi}(r)$. Выражения для нуклонной ρ , кинетической τ и спиновой **J** плотности можно найти в [6]. Разделение ФПЭ Скирма на изоскалярную и изовекторную компоненты значительно облегчает его представление и позволяет существенно сократить запись. Константы ядерного функционала (1) определены через параметры ФПЭ Скирма $t_{0...3}$, $x_{0...3}$ и γ следующим образом:

$$C_{0}^{\rho} = \frac{3}{8}t_{0} + \frac{3}{48}t_{3}\rho_{0}^{\gamma},$$

$$C_{1}^{\rho} = -\frac{1}{4}t_{0}\left(\frac{1}{2} + x_{0}\right) - \frac{1}{24}t_{3}\left(\frac{1}{2} + x_{3}\right)\rho_{0}^{\gamma},$$

$$C_{0}^{\Delta\rho} = -\frac{9}{64}t_{1} + \frac{1}{16}t_{2}\left(\frac{5}{4} + x_{2}\right),$$

$$C_{1}^{\Delta\rho} = \frac{3}{32}t_{1}\left(\frac{1}{2} + x_{1}\right) + \frac{1}{32}t_{2}\left(\frac{1}{2} + x_{2}\right),$$

$$C_{0}^{\tau} = \frac{3}{16}t_{1} + \frac{1}{4}t_{2}\left(\frac{5}{4} + x_{1}\right),$$

$$C_{1}^{\tau} = -\frac{1}{8}t_{1}\left(\frac{1}{2} + x_{1}\right) + \frac{1}{8}t_{2}\left(\frac{1}{2} + x_{2}\right),$$

$$\left[1 - \left(\frac{1}{2} + x_{1}\right) - \frac{1}{8}\left(\frac{1}{2} + x_{2}\right)\right]$$

$$\left[1 - \left(\frac{1}{2} + x_{1}\right) - \frac{1}{8}\left(\frac{1}{2} + x_{2}\right)\right]$$

$$C_0^J = \eta \left[\frac{1}{8} t_1 \left(\frac{1}{2} - x_1 \right) - \frac{1}{8} t_2 \left(\frac{1}{2} + x_2 \right) \right],$$

$$C_1^J = \eta \left(\frac{1}{16} t_1 - \frac{1}{16} t_2 \right),$$

$$C_0^{\nabla J} = -\frac{3}{4} W_0,$$

$$C_1^{\nabla J} = -\frac{1}{4} W_0.$$

Параметр $\eta = 0$ исключает из рассмотрения взаимодействия, связанные с J^2 -членом ФПЭ Скирма (1), в то время как $\eta = 1$ соответствует ядерному функционалу, учитывающему J^2 -члены.

Существует большое многообразие параметризаций ФПЭ Скирма (см. например, [10]). Традиционно параметры взаимодействия Скирма подбираются таким образом, чтобы описывать свойства основного состояния атомного ядра: энергию связи, зарядовый радиус и спин-орбитальное расщепление [3, 7]. В настоящей работе выбрана параметризация ФПЭ Скирма SLy4 [11] (параметры приведены в табл. 1), которая является надежным инструментом для описания различных свойств магических ядер [3]. В частности, как показано на рис. 1, экспериментальные значения [12] для энергии связи дважды магических ядер $^{16}\rm{O},~^{40,48}\rm{Ca},~^{56,78}\rm{Ni},$ $^{100,132}\rm{Sn}$ и $^{208}\rm{Pb}$ воспроизводятся с хорошей точностью. Видно, что максимальное отклонение не превышает 0.7% в случае изотопа $^{16}\rm{O}.$

Рис. 1. Относительные ошибки в оценках энергии связи дважды магических ядер. Экспериментальные данные взяты из работы [12]

Таблица 1. Параметры ФПЭ

Параметры	SLy4	$SLy4^*$	SLy4**	
	[11]			
$C_0^{\tau(\nabla\rho)^2}$ (MəB· ϕ M ¹⁰)	0	-300	-500	
$t_0 (MэВ·фм^3)$	-2488.91	-2488.91	-2488.91	
$t_1 (MэВ·фм^5)$	486.82	412.27	373.93	
$t_2 (MэВ·фм^5)$	-546.39	-546.39	-546.39	
$t_3 (M \ni B \cdot \varphi M^{3+3\gamma})$	13777.0	13777.0	13777.0	
x_0	0.834	0.834	0.834	
x_1	-0.344	-0.344	-0.344	
x_2	-1.00	-1.10	-1.15	
x_3	1.354	1.354	1.354	
γ	0.1667	0.1667	0.1667	
$W_0 (MэВ·фм^5)$	123.0	123.0	123.0	
η	0	0	0	

Более чувствительной к параметрам ФПЭ является одночастичный спектр вблизи поверхности Ферми. Рассмотрим схему одночастичных нейтронных уровней на примере изотопа ²⁰⁸Pb, так как именно по разности энергий между состояниями спин-орбитального дублета $\nu 3p_{1/2}$ и $\nu 3p_{3/2}$ была определена сила спин-орбитального потенциала в случае ФПЭ SLy4 [11]. На рис. 2 представлено сравнение рассчитанного одночастичного нейтронного спектра вблизи поверхности Ферми с экспериментально наблюдаемым [1]. Известно, что в изотопе ²⁰⁸Pb последняя заполненная нейтронная подоболочка соответствует уровню $\nu 3p_{1/2}$. Видно, что результаты ХФ расчетов переоценивают одночасти

стичную энергию на 0.7 МэВ. Более значительные расхождения наблюдаются выше поверхности Ферми (см. рис. 2). Однако в случае описания спинорбитального расщепления $\nu 3p_{1/2} - \nu 3p_{3/2}$, рассчитанное значение (1.1 МэВ) находятся в хорошем согласии с наблюдаемым (0.9 МэВ). При исследовании одночастичных уровней бета-радиоактивного изотопа ¹³²Sn расчеты демонстрируют заметное отклонения от экспериментальных данных [1]. В частности, в работе [7, 13] показано, что смещение протонных уровней $\pi 1g_{7/2}$ и $\pi 1h_{11/2}$ в изотопах Sn, а также нейтронных уровней $\nu 1h_{9/2}$ и $\nu 1i_{13/2}$ в изотонах N = 82 является хорошим полигоном для анализа влияния спин-орбитального и тензорного взаимодействий. Наш анализ показал, что измеренная разность энергий между уровнями $\pi 1g_{7/2}$ и $\pi 1h_{11/2}$ (2.79 МэВ) в ядре ¹³²Sn хорошо воспроизводится в рамках $X\Phi$ расчетов с $\Phi\Pi\Im$ SLy4, где расчетная величина составляет 3.1 МэВ. Для нейтронных уровней $\nu 1h_{9/2}$ и $\nu 1i_{13/2}$ расчеты дают незначительное завышение (не более 300 кэВ) разности энергий между этими уровнями по сравнению с экспериментальным значением, равным 1.13 МэВ. С другой стороны, наблюдаемая разность энергий между уровнями $\pi 2d_{5/2}$ и $\nu 2d_{3/2}$ (1.30 МэВ [1]) ответственна за период бета-распада ¹³²Sn. Результаты расчетов дают 0.04 МэВ. Как улучшить описание одночастичного спектра?

Рис. 2. Схема нейтронных одночастичных уровней вблизи поверхности Ферми в ядре ²⁰⁸Pb. Расчеты ХФ выполнены с использованием ФПЭ Скирма SLy4 и с новыми ФПЭ SLy4* и SLy4**, включающие слагаемые (4). Экспериментальные данные взяты из работы [1]

Как было показано в [8, 9], модификация радиальной зависимости эффективной массы нуклона на поверхности ядра приводит к увеличению плотности одночастичных уровней вблизи поверхности Ферми. Для этого добавим в ФПЭ Скирма (1) слагаемые в следующем виде:

$$\mathcal{H}(\mathbf{r}) = \mathcal{H}_{Sky}(\mathbf{r}) + \Delta \mathcal{H}(\mathbf{r}), \qquad (3)$$

где

$$\Delta \mathcal{H}(\mathbf{r}) = C_0^{\tau(\nabla\rho)^2} \tau(\mathbf{r}) (\nabla\rho(\mathbf{r}))^2 + C_0^{\rho^2(\nabla\rho)^2} \rho(\mathbf{r})^2 (\nabla\rho(\mathbf{r}))^2.$$
(4)

Следует отметить, что в выражении (4) только первое слагаемое вносит вклад в радиальную зависимость эффективной массы нуклона следующим образом:

$$\frac{m}{m_q^*(\mathbf{r})} = 1 + \frac{2m}{\hbar^2} \left[C_q^{\tau} \rho_q(\mathbf{r}) + C_0^{\tau(\nabla\rho)^2} \left(\nabla\rho(\mathbf{r}) \right)^2 \right],$$
(5)

где $2C_q^{\tau} = C_0^{\tau} \pm C_1^{\tau}$, а знак «+» соответствует нейтронам $(q = \nu)$, а «-» — протонам $(q = \pi)$. На рис. 3 представлены профили эффективных масс нуклонов в ²⁰⁸Pb в зависимости от параметра $C_0^{\tau(\nabla \rho)^2} = 0$, -300 и -500 МэВ·фм¹⁰. При $C_0^{\tau(\nabla \rho)^2} = 0$ МэВ·фм¹⁰ профиль соответствует оригинальному ФПЭ Скирма SLy4. Видно, что с увеличением параметра $\left|C_0^{\tau(\nabla \rho)^2}\right| c 0$ до 500 МэВ·фм¹⁰ наблюдается рост эффективной массы m_q^*/m на поверхности ядра как для нейтронов (см. рис. 3 *a*), так и протонов (см. рис. 3 *b*). При больших значениях параметра $C_0^{\tau(\nabla \rho)^2}$ формируется пик на поверхности ядра, в то время как в центре ядра эффективные массы приближаются к значениям, полученным без учета новых слагаемых в ФПЭ.

Второе слагаемое в выражении (4) компенсирует эффект первого на среднее поле ядра [8, 9]. При этом между параметрами $C_0^{\tau(\nabla \rho)^2}$ и $C_0^{\rho^2(\nabla \rho)^2}$ можно выделить следующее соотношение:

$$C_0^{\rho^2(\nabla\rho)^2} = (-10\,\mathrm{\phi M}) \cdot C_0^{\tau(\nabla\rho)^2} \,. \tag{6}$$

Рассмотрим нейтронный и протонный потенциал среднего поля в ядре 208 Pb (см. рис. 4). Видно, что результаты XФ расчетов с новыми ФПЭ SLy4* и SLy4**, которые включают слагаемые (4), демонстрируют очень схожее поведение потенциала среднего поля.

Следует подчеркнуть, что введение слагаемых (4) в ядерный функционал, а также последуюцее усиление радиальной зависимости эффективной массы нуклона на поверхности ядра за счет изменения параметра $C_0^{\tau(\nabla \rho)^2}$, приводит к снижению точности описания энергии связи. Например, при значении $C_0^{\tau(\nabla \rho)^2} = -500$ МэВ·фм¹⁰, отклонение составляет 5% для энергии связи ядра ²⁰⁸Pb и 11% в случае ¹⁶О. Очевидно, что включение слагаемых (4) в ФПЭ является не совсем корректной процедурой без соответствующего фитирования параметров стандартного ФПЭ Скирма. При усилении параметра $C_0^{\tau(\nabla \rho)^2}$ необходимо фитирование всех параметров [8, 9], но оно до сих пор не было выполнено.

Следуя процедуре фитирования параметров ФПЭ, изложенной в [11], были определены допустимые отклонения между рассчитанными и экспери-

Рис. 3. Радиальная зависимость эффективных масс нейтронов (см. рис. *a*) и протонов (см. рис. *б*) в ядре ²⁰⁸ Pb. Сплошной кривой показаны результаты расчетов, выполненных с использованием $\Phi\Pi$ Э Скирма SLy4. Результаты Х Φ расчетов с новыми $\Phi\Pi$ Э SLy4* и SLy4**, включающие слагаемые (4), представлены соответственно пунктирной и штриховой кривыми

ментальными значениями. В частности, для описания энергии связи был установлен критерий точности описания, не превышающий 2 МэВ. Подгонка параметров исходного ФПЭ Скирма SLv4 проводилась для двух значений параметра $C_0^{\tau(\nabla \rho)^2}$, равных – 300 МэВ·фм¹⁰ и –500 МэВ·фм¹⁰. Найдена корреляция между параметрами $C_0^{\tau(\nabla \rho)^2}$, t_1 и x_2 . С помощью параметров t_1 и x_2 удается контролировать качество описания как свойств бесконечной ядерной материи, так и энергии связи, что упрощает процесс реализации численных расчетов. Предлагаемые значения параметров t_1 и x_2 , полученные для $\Phi\Pi \Im$ SLy4* и SLy4**, представлены в табл. 1. Новые параметризации с хорошей точностью описывают энергии связи дважды магических ядер ¹⁶О, ^{40,48}Ca, ^{56,78}Ni, ^{100,132}Sn и ²⁰⁸Pb (см. рис. 1). Из рисунка видно, что максимальное отклонение составляет менее 0.6% в случае параметризации ФПЭ SLy4* и 0.7% для SLy4**. Наш анализ показал, что для набора SLy4^{*} с $C_0^{\tau(\nabla\rho)^2} = -300$ МэВ·фм¹⁰ значение χ^2 составляет 1.60, а в случае ФПЭ SLy4^{**}, где параметр $C_0^{\tau(\nabla\rho)^2} = -500$ МэВ·фм¹⁰, расчеты дают $\chi^2 = 1.16$. В таблице 2 представлены некоторые характеристики бесконечной ядерной материи, такие как плотность насыщения ρ_0 , коэффициент сжимаемости K_{∞} и другие параметры. Видно, что качество описания свойств бесконечной ядерной материи функционалами SLy4* и SLy4** сопоставимо с ФПЭ Скирма SLy4 [11].

Интересно рассмотреть влияние радиальной зависимости эффективной массы нуклона на плотность одночастичных состояний вблизи поверхности Ферми. Вернемся к рис. 2, где представлена схема нейтронных уровней в изотопе ²⁰⁸Pb, полученная с использованием ФПЭ SLy4* и SLy4**. Видно, что спин-орбитальное расщепление $\nu 3p_{1/2} - \nu 3p_{3/2}$ практически не изменяется при усилении радиальной зависимости эффективной массы нуклона на поверхности ядра. Оба набора параметров SLy4* и SLy4** хорошо воспроизводят энергию спин-орбитального расщепления на уровне, со-

Таблица 2. Свойства бесконечной ядерной материи для всех параметризаций ФПЭ, использованных в настоящей работе

	SLy4	$SLy4^*$	$SLy4^{**}$	
	[11]			
$ ho_0~(\mbox{Φm}^{-3})$	0.160	0.160	0.161	
a_V (M ₃ B)	-15.969	-16.021	-16.021	
K_{∞} (МэВ)	229.9	230.6	231.3	
m^*/m	0.70	0.70	0.70	

поставимом с ФПЭ SLy4 [11]. Тем не менее, рассчитанная энергия последней заполненной подоболочки $\nu 3p_{1/2}$ в случае ФПЭ SLy4* соответствует экспериментальному значению. В ФПЭ SLy4**, где радиальная зависимость эффективной массы нуклона на поверхности ядра выражена более сильно, описание энергии уровня $\nu 3p_{1/2}$ немного ухудшается. В целом, плотность одночастичных нейтронных состояний вблизи поверхности Ферми в изотопе ²⁰⁸Pb увеличивается (см. рис. 2).

В нейтронно-избыточном изотопе ¹³²Sn наблюдается значительное улучшение качества описания одночастичного спектра. Наше исследование показало, что разница энергий между уровнями $\pi 1g_{7/2}$ и $\pi 1h_{11/2}$ воспроизводится с точностью до 20 кэВ при использовании нового функционала SLy4*. В то же время, для ФПЭ SLy4** расчеты демонстрируют небольшое занижение на 240 кэВ по сравнению с экспериментальным значением, равным 2.79 МэВ [1]. Следует подчеркнуть кардинальное улучшение в описании наблюдаемой разности энергий между уровнями $\pi 2d_{5/2}$ и $\nu 2d_{3/2}$, которая составляет 1.30 МэВ [1]. Результаты ХФ расчетов с использованием оригинального функционала SLy4 дают значение 0.04 МэВ. В то же время, для новых функционалов SLy4* и SLy4** разность энергий составляет 1.1 МэВ и 1.7 МэВ соответственно. Вид-

Рис. 4. Потенциал среднего поля в ядре ²⁰⁸Pb для нейтронов (см. рис. *a*) и протонов (см. рис. *б*). Сплошной кривой показаны результаты расчетов, выполненных с использованием $\Phi\Pi\Theta$ Скирма SLy4. Результаты X Φ расчетов с новыми $\Phi\Pi\Theta$ SLy4^{*} и SLy4^{**}, включающие слагаемые (4), представлены соответственно пунктирной и штриховой кривыми

Таблица 3. Значения среднеквадратичных зарядовых радиусов (значения радиусов указаны в фм). Экспериментальные значения взяты из [14, 16, 17]. Результаты расчетов выполнены с ФПЭ SLy4, SLy4* и SLy4**

Ядро	Эксп.			Теория		
	[14]	[16]	[17]	SLy4	$SLy4^*$	$SLy4^{**}$
¹⁶ O	2.6991(52)	2.730(25)	-	2.80	2.78	2.75
40 Ca	3.4776(19)	3.478(1)	-	3.51	3.49	3.47
$^{48}\mathrm{Ca}$	3.4771(20)	3.474(1)	-	3.54	3.52	3.49
56 Ni	—	—	3.7226(27)	3.79	3.76	3.72
⁷⁸ Ni	-	—	-	4.00	3.97	3.95
$^{100}\mathrm{Sn}$	—	—	-	4.50	4.47	4.44
$^{132}\mathrm{Sn}$	4.7093(76)	—	-	4.74	4.71	4.69
$^{208}\mathrm{Pb}$	5.5012(13)	5.501(1)	_	5.52	5.49	5.47

но, что учет радиальной зависимости эффективной массы нуклона заметно улучшает согласие с экспериментальными значениями.

Известно, что зарядовой радиус играет важную роль, так как содержит информацию о мезоскопической природе атомных ядер [14]. Исследуем чувствительность среднеквадратичного зарядового радиуса атомного ядра $\langle R_{ch}^2 \rangle^{1/2}$ к радиальной зависимости эффективной массы нуклона, возникающая в результате новых слагаемых в ядерном функционале (3). В частости, зарядовый радиус связан со среднеквадратичным протонным радиусом $\langle R_{\pi}^2 \rangle^{1/2}$, отвечающим точечной плотности, а также с релятивистскими и спин-орбитальными поправками к нему и учетом конечного распределения заряда нуклонов [3, 15]. В настоящей работе зарядовый радиус вычисляется при помощи простого эмпирического соотношения:

$$\langle R_{ch}^2 \rangle \approx \langle R_\pi^2 \rangle + 0.64 \, \mathrm{dm}^2,$$
(7)

Данная оценка приводит к небольшой ошибке (в пределах 0.02 фм [15]) по сравнению с более точным вычислением зарядового радиуса, о котором было упомянуто ранее.

В табл. 3 проведено сравнение зарядовых радиу-

сов дважды магических ядер, полученных в результате различных измерений [14, 16, 17]. Показано, что экспериментальные данные находятся в хорошем согласии, с отклонением между ними не более 0.01 фм. Для изотопа ⁵⁶Ni в настоящее время существует только одно измерение [17]. Результаты расчетов, представленные в таблице, демонстрируют, что с усилением радиальной зависимости эффективной массы нуклона на поверхности ядра наблюдается незначительное уменьшение зарядового радиуса. При этом максимальное снижение по сравнению с результатами, полученными с использованием ФПЭ Скирма SLy4, не превышает 2% в случае изотопов ¹⁶О и ⁵⁶Ni. Сравнение результатов расчета с имеющими экспериментальными данными показывает, что введение слагаемых (3) в ФПЭ улучшает описание зарядового радиуса.

ЗАКЛЮЧЕНИЕ

В настоящей работе на базе самосогласованной схемы расчетов, основанной на приближении Хартри–Фока с функционалом плотности энергии типа Скирма, изучено влияние радиальной зависимости эффективной массы нуклона на поверхности ядра на свойства основного состояния магических ядер ¹⁶O, ^{40,48}Ca, ^{56,78}Ni, ^{100,132}Sn и ²⁰⁸Pb. На основании проведенного анализа предложены два новых набора параметров SLy4* и SLy4** для функционала, включающего слагаемые пропорциональные $\tau (\nabla \rho)^2$ и $\rho^2 (\nabla \rho)^2$, влияющих на радиальную зависимость эффективной массы нуклонов на поверхности ядра. Сравнение результатов расчета с имеющими экспериментальными данными демонстрирует улучшение описания плотности одночастичных состояний вблизи поверхности Ферми, сохраняя при этом надежность описания свойств основного состо-

- [1] Grawe H., Langanke K., Martínez-Pinedo G. // Rep. Prog. Phys. 70. 1525 (2007).
- [2] Arnould M., Goriely S. // Prog. Part. Nucl. Phys. **112**. 103766 (2020).
- [3] Bender M., Heenen P.-H., Reinhard P.-G. // Rev. Mod. Phys. 75. 121 (2003).
- [4] Paar N., Vretenar D., Khan E., Colò G. // Rep. Prog. Phys. 70. 691 (2007).
- [5] Skyrme T.H.R. // Phil. Mag. 1. 1043 (1956).
- [6] Vautherin D., Brink D.M. // Phys. Rev. C. 5. 626 (1971).
- [7] Arsenyev N.N., Severyukhin A.P., Adamian G.G., Antonenko N.V. // Phys. Rev. C. 110. 034312 (2024).
- [8] Fantina A.F., Margueron J., Donati P., Pizzochero P.M. // Jour. Phys. G: Nucl. Part. Phys. 38. 025101 (2011).
- [9] Severyukhin A.P., Marqueron J., Borzov I.N., Nguyen

яния атомного ядра и бесконечной ядерной материи. Учет радиальной зависимости в функционале улучшает описание зарядового радиуса.

Авторы выражают благодарность Жерому Маргуерону за сотрудничество. Предложенный им алгоритм фитирования параметров функционала помог улучшить результаты расчетов.

Исследование было поддержано в рамках научной программы Национального центра физики и математики, направление No. 6 «Ядерная и радиационная физика» (этап 2023-2025).

Van Giai // Phys. Rev. C. 91. 034322 (2015).

- [10] Dutra M., Lourenco O., Sá Martins J. S. et al. // Phys. Rev. C. 85. 035201 (2012).
- [11] Chabanat E., Bonche P., Haensel P. et al. // Nucl. Phys. A. 635. 231 (1998).
- [12] Wang M., Huang W.J., Kondev F.G. et al. // Chin. Phys. C. 45. 030003 (2021).
- [13] Colò G., Sagawa H., Fracasso S., Bortignon P.F. // Phys. Lett. B. 646. 227 (2007).
- [14] Angeli I., Marinova K.P. // At. Data Nucl. Data Tables. **99**. 69 (2013).
- [15] Carlson B.V., Dutra M., Lourenço O., Margueron J. // Phys. Rev. C. **107**. 035805 (2023).
- [16] Fricke G., Heilig K. // Nuclear Charge Radii, edited by H. Schopper. Springer-Verlag, Berlin, 2004.
- [17] Sommer F., König K., Rossi D.M. et al. // Phys. Rev. Lett. 129. 132501 (2022).

Radial dependence of the nucleon effective mass and the ground-state properties of magic nuclei

D. Yu. Smoliannikov^{1,a}, N. N. Arsenyev^{1,b}, A. P. Severyukhin^{1,2,c}

¹Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research Dubna 141980, Russia

²Dubna State University. Dubna 141982, Russia E-mail: ^a dsmoliannikov@theor.jinr.ru, ^barsenev@theor.jinr.ru, ^csever@theor.jinr.ru

The contributions of various terms to the nucleon effective mass are analyzed using the self-consistent Hartree-Fock method based on Skyrme-type energy density functional (EDF). The terms of the EDF that impacts nucleon effective mass at the surface of a nucleus has been included. The effects of these terms on the groundstate properties (nuclear charge radii, binding energy and single-particle spectra) of doubly closed shell nuclei 16 O, 40,48 Ca, 56,78 Ni, 100,132 Sn and 208 Pb are examined. It has been found that the radial dependence of nucleons' effective mass influences both the density diffuseness and the scheme of single-particle levels near the Fermi level. Two new sets of parameters for the nuclear density functional have been proposed.

PACS: 21.10.-k, 21.30.-x, 21.60.Jz. Keywords: energy density functional, Hartree-Fock method, nucleon effective mass. Received 05 December 2024. English version: Moscow University Physics Bulletin. 2025. 80, No. . Pp. .

Сведения об авторах

- Дмитрий (496)1. Смольянников Юрьевич стажер-исследователь; тел.: 216-45-33.e-mail: dsmoliannikov@theor.jinr.ru.
- 2. Арсеньев Николай Николаевич канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (496) 216-36-65, e-mail: arsenev@theor.jinr.ru.
- 3. Северюхин Алексей Павлович канд. физ.-мат. наук, ст. науч. сотрудник; тел.: (496) 216-24-11, e-mail: sever@theor.jinr.ru.