ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ВЕЩЕСТВА

Дихроизм и двулучепреломление в рентгеновских спектрах запрещенных отражений

М.В. Горбунова, ^{1,*} Е.Н. Овчинникова, ^{1,†} А.П. Орешко ¹ Московский государственный университет имени М.В. Ломоносова, физический факультет, кафедра физики твёрдого тела Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2 (Поступила в редакцию 30.06.2025; подписана в печать 28.08.2025)

В работе реализован подход с использованием матрицы распространения для вычисления интенсивности брэгговских отражений в резонансной дифракции рентгеновского излучения. Это позволяет учесть анизотропные эффекты, приводящие к изменению поляризации излучения в процессе распространения. На примере обработки спектров запрещенных отражений в кристалле ортобората железа, выполненного с помощью программы, основанной на таком подходе, продемонстрировано улучшение результатов расчетов с экспериментальными данными по сравнению со стандартными методами.

PACS: 61.05.C-, 61.50.Ah, 78.70.Ck, 78.70.Dm УДК: 53.083.2: 535.012.2: 539.26: 548.732: 535.34:535.581:543.442:543.427

Ключевые слова: рентгеновская дифракция, рентгеновская спектроскопия, оптическая активность, анизотропия восприимчивости.

DOI: 10.55959/MSU0579-9392.80.2550501

введение

Резонансное рассеяние рентгеновских лучей (RXS) появилось в последние два десятилетия как популярный метод изучения локальных свойств кристаллов, таких как магнитное, зарядовое и орбитальное упорядочение, тепловые колебания и т. д. [1-6]. Это отличает ее от обычной брэгговской дифракции, которая, в основном, предназначена для изучения распределения электронной плотности в кристалле. Дополнительные возможности метода возникают вследствие того, что при энергии падающего излучения, близкой к краям поглощения атомов вещества, в амплитуде рассеяния возникают тензорные добавки, обусловленные локальной анизотропией атомного окружения или магнитными свойствами. Эти добавки малы по сравнению с изотропной частью амплитуды рассеяния и для того, чтобы их выделить, стараются найти такие брэгговские отражения, где изотропный вклад в амплитуду отсутствует — запрещенные отражения. В тех случаях, когда период физического свойства, являющегося причиной возникновения анизотропной поправки, отличается от периода кристаллической решетки, могут возникать отражения, наблюдаемые при других углах, чем основные отражения, и часто называемые сателлитами. Если же периоды совпадают, дополнительные отражения, обусловленные только анозотропной частью амплитуды рассеяния, могут наблюдаться в тех местах, где присутствуют погасания,

вызванные симметрией кристалла, а именно наличием скользящей плоскости и/или винтовой оси. Такие отражения были впервые обнаружены Д.Х. и Л.К. Темплтонами [7] и теоретически описаны в работах В.Е. Дмитриенко [8, 9]. С тех пор запрещенные отражения изучались экспериментально во многих кристаллах. Их также называют чисто резонансными отражениями, потому что они появляются только очень близко к краям поглощения атомов из-за процессов резонансного рассеяния. Из-за этого энергетического ограничения и слабости их можно измерить только с помощью синхротронного излучения (СИ). Чувствительность резонансной дифракции рентгеновского излучения (РИ) к локальной анизотропии положений атомов возникает из-за мультипольных электронных переходов и, следовательно, описывается в терминах тензоров рассеяния различных рангов. Самые сильные вклады в чисто резонансные отражения обеспечиваются так называемым диполь-дипольным рассеянием. Помимо этого, существуют многочисленные физические явления, вносящие вклад в резонансные отражения. Вклады более высокого порядка, такие как диполь-квадрупольный [10] или квадруполь-квадрупольный [11], становятся важными, когда диполь-дипольный вклад исчезает из-за ограничений по симметрии или физических правил отбора. В магнитных кристаллах магнитные отражения в основном обеспечиваются антисимметричной частью диполь-дипольного вклада [12].

Сосуществование как магнитной структуры, так и локальной кристаллической анизотропии может, в принципе, привести к так называемым «комбинированным» запрещенным отражениям [13], которые до сих пор не наблюдались. Изучение резонанс-

^{*} E-mail: gorbunova.mv20@physics.msu.ru

[†] E-mail: OvchinnikovaEN@my.msu.ru

ной дифракции РИ в GdB₄ в [14] выявило как четные, так и нечетные относительно инверсии времени диполь-дипольные вклады в запрещенные отражения, доминирующие при различных температурах. Теоретически предсказаны и экспериментально наблюдались запрещенные отражения, обусловленные искажением симметрии локального окружения за счет таких причин, как тепловые колебания или точечные дефекты [15-19]. Интерференция между нерезонансным магнитным рассеянием и резонансными диполь-квадрупольными и квадруполь-квадрупольными каналами была обнаружена в гематите Fe_2O_3 [20]. Таким образом, во многих случаях энергетические спектры запрещенных отражений можно трактовать как результат интерференции между двумя или более каналами рассеяния. Явления интерференции могут быть еще более важными, когда резонансные атомы занимают разные кристаллографические позиции. Такая ситуация наблюдалась в магнетите Fe₃O₄ [21]. Там позиция 16(b) железа приводит к появлению отражений h00, h = 4n + 2, соответствующих диполь-дипольному рассеянию с максимумом, близким к краю поглощения, в то время как ионы в позиции 8(а) допускают только диполь-квадрупольный вклад в интенсивность в предкраевой области. Таким образом, пики, соответствующие различным позициям, разделены по энергии. Для гранатов было показано, что различные атомные позиции могут обеспечивать различные запрещенные отражения [22]. Но существуют случаи, когда две разные кристаллографические позиции атомов одного сорта одновременно дают вклад в одно и то же дифракционное отражение. Примером являются исследование резонансной дифракции в ортоборате железа Fe_3BO_6 [23] и соединении урана U_2N_3 [24]. В этих случаях интерференция излучения, рассеянного двумя позициями, существенно влияет на форму спектра, который измеряется в эксперименте. Поскольку амплитуды рассеяния, соответствующие двум позициям, имеют разную спектральную зависимость, они могут усиливать или ослаблять друг друга при разных значениях энергии падающего излучения, т.е. трудно говорить о типе интерференции, соответствующем отражению в целом. Это затрудняет обработку экспериментальных спектров, целью которых является изучение резонансного рассеяния РИ каждой из позиций. Еще одна проблема состоит в правильном учете поглощения, поскольку коэффициент поглощения в низкосимметричном кристалле является анизотропным [25]. Более того, возможен эффект двулучепреломления, который, несмотря на малость, проявляется в поляризационных свойствах распространяющегося в кристалле РИ [26].

При расчете спектров запрещенных отражений обычно используется кинематическая теория дифракции, что обусловлено малой глубиной проникновения излучения вследствие сильного поглощения вблизи резонансной энергии. При этом учитывается анизотропия рассеяния излучения с атома-

ми, но поглощение считается изотропным. В работах [27–29] показано, что учет анизотропных эффектов в поглощении приводит к улучшению соответствия теории и эксперимента. В настоящей работе детально рассматривается влияние анизотропии коэффициента поглощения на спектральные свойства запрещённых отражений на примере кристалла ортобората железа Fe_3BO_6 .

1. ИНТЕНСИВНОСТЬ БРЭГГОВСКИХ ОТРАЖЕНИЙ С УЧЕТОМ ЭФФЕКТОВ ДИХРОИЗМА И ДВУЛУЧЕПРЕЛОМЛЕНИЯ

Анизотропия рассеяния рентгеновского излучения, которая проявляется при энергиях падающего излучения, близких к краям поглощения атомов, сильно затрудняет теоретическое рассмотрение и расчеты, поэтому последовательного описания динамических эффектов в этой области до сих пор не существует, хотя отдельные исследования подтверждают их существование [30, 31]. Перенос теории динамической дифракции мёссбауэровского излучения [32], где также существует анизотропия рассеяния, на случай рентгеновского излучения, осложняется тем, что в рассматриваемом случае возможно одновременное существование нескольких типов резонансных переходов, тогда как тип ядерного перехода фиксирован. Обычно для описания спектров брэгговских отражений достаточно кинематической теории дифракции, где интенсивность рефлекса выражается как [33]:

$$I(\mathbf{H}) = \frac{|F(E, \mathbf{e}, \mathbf{e}', \mathbf{H})|^2}{\mu(E, \mathbf{e}) + \mu(E, \mathbf{e}') \times g},$$
(1)

где e, e' — векторы поляризации падающего и отражённого лучей, E — энергия излучения, q — геометрический фактор, F — матрица структурной амплитуды, \mathbf{H} — вектор обратной решетки, μ — коэффициент поглощения. Матрица F учитывает анизотропные свойства рассеяния отдельной элементарной ячейкой и типы резонансных переходов, μ содержит изотропный нерезонансный вклад, который может быть найден в таблицах [35], и резонансный вклад, который включает в себя изотропную и анизотропную части. Поскольку анизотропная часть, которая зависит от симметрии кристалла, мала, то обычно этим пренебрегают и рассматривают только изотропную часть коэффициента поглощения. Однако, в кристаллах с низкой симметрией наличие анизотропного вклада в коэффициент поглощения существенно проявляется в виде линейного дихроизма.

В рамках данной статьи описание поглощения излучения атомами вещества основывается на дисперсионной формуле Крамерса—Гейзенберга. Данная модель позволяет остаться в рамках кинематической теории дифракции, но в ряде случаев позволяет адекватно описать ряд наблюдаемых эффектов и получить разумные численные оценки. Для

учёта явлений дихроизма и двулучепреломления в поглощении вводится комплексный линейный «коэффициент ослабления» $\mu=\mu'+i\mu''$, действительная и мнимая части которого связаны с атомным рассеивающим фактором следующим образом: $\mu'=2n_ar_e\lambda f''$ и $\mu''=2n_ar_e\lambda f'$, где r_e — классический радиус электрона, n_a — атомная плотность, f=f'+if''. Отсюда следует, что действительная и мнимая части амплитуды рассеяния отвечают за явления дихроизма и двулучепреломления соответственно. Запишем комплексный показатель преломления $n=1-\delta+i\beta$ и используем его в уравнении плоской монохроматической волны:

$$E = E_0 e^{i(kz - \omega t)} = E_0 e^{i\omega(\frac{n}{c})z - t} = E_0 e^{i\omega(\frac{z}{c} - t) + (n-1)i\omega\frac{z}{c}},$$
(2)

откуда становится очевидным соотношение $E=E_0e^{i\omega(\frac{z}{c}-t)-(i\delta+\beta)kz}$, и с учётом $\mu'=\frac{4\pi}{\lambda}\beta$ и $\mu''=\frac{4\pi}{\lambda}\delta$ получим, что выражение для интенсивности соответствует закону Бугера–Ламберта: $I=|E|^2=I_0e^{-\mu'z}$. Таким образом, введённый коэффициент ослабления выполняет функции привычного коэффициента поглощения, но также обладает дополнительными свойствами.

Вблизи краёв поглощения амплитуда рассеяния рентгеновского излучения, и, следовательно, такой коэффициент ослабления приобретает тензорные свойства, и в поляризационных индексах может

быть представлен матрицей

$$\mu = \begin{pmatrix} \mu_{\sigma\sigma} & \mu_{\sigma\pi} \\ \mu_{\pi\sigma} & \mu_{\pi\pi} \end{pmatrix} \tag{3}$$

где индексы σ и π соответствуют двум ортогональным векторам линейной поляризации волны. Все коэффициенты матрицы комплексны и зависят от направления излучения относительно осей кристалла. Отметим, что в магнитных материалах матрица несимметрична относительно перестановки индексов.

Наличие недиагональных членов в матрице (3) приводит к тому, что линейные поляризации не являются собственными поляризациями среды, поляризация излучения меняется в процессе распространения, и линейно поляризованное падающее излучение на глубине z становится эллиптически поляризованным (см. рис. 1). Для того, чтобы учесть изменение поляризации в процессе распространения излучения в кристалле, в работе [27] был развит подход с помощью матрицы распространения T, которая учитывает поглощение, дихроизм и двулучепреломление в слое толщины l и полностью описывает поляризацию и амплитуду излучения на этой глубине:

$$T = \begin{pmatrix} T_{\sigma\sigma} & T_{\sigma\pi} \\ T_{\pi\sigma} & T_{\pi\pi} \end{pmatrix}. \tag{4}$$

В работе [27] получены явные выражения для коэффициентов матрицы

$$\begin{pmatrix} T_{\sigma\sigma} & T_{\sigma\pi} \\ T_{\pi\sigma} & T_{\pi\pi} \end{pmatrix} = e^{-\frac{1}{4}(\mu_{\sigma\sigma} + \mu_{\pi\pi})l} \begin{pmatrix} \cosh(\tau l) + \frac{\mu_{\pi\pi} - \mu_{\sigma\sigma}}{4\tau \sinh(\tau l)} & -\mu_{\sigma\pi} \sinh(\tau l) \\ -\mu_{\pi\sigma} \sinh(\tau l) & \cosh(\tau l) + \frac{\mu_{\sigma\sigma} - \mu_{\pi\pi}}{4\tau} \sinh(\tau l) \end{pmatrix},$$
(5)

где
$$\tau = \sqrt{(\mu_{\pi\pi} - \mu_{\sigma\sigma}) + 4\mu_{\sigma\pi}\mu_{\pi\sigma}}$$
.

Интегрирование по толщине образца от 0 до L дает величину поглощенной энергии (со знаком минус), что выражается формулой:

$$I_{abs} \sim \int_{0}^{L} Tr(T^{+}MT)dl, \qquad (6)$$

где M — поляризационная матрица плотности:

$$M = (I + P\sigma)/2,\tag{7}$$

I — единичная матрица, P — вектор, составленный из параметров Стокса излучения, σ — матрицы Паули. В случае неполяризованного излучения матрица M единична, и выражение (6) приводит к закону Бугера—Ламберта—Бера.

Для описания резонансного рассеяния СИ, в котором падающее излучение поляризовано и проводится анализ поляризации рассеянного излучения, интенсивность рассеянного излучения может быть найдена следующим образом:

$$I_{abs} \sim \int_{0}^{\infty} Tr(A^{+}T_{o}^{+}F^{+}T_{i}^{+}MT_{i}FT_{o}A)dl,$$
 (8)

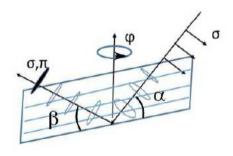


Рис. 1. Иллюстрация изменения поляризации РИ при распространении в кристалле и дифракционном отражении

где матрица A выделяет компоненту излучения с нужной поляризацией в соответствии с формализмом Джонса, индексы o и i обозначают, соответственно, отражённую и падающую волну. Интегрирование проводится от нуля до бесконечности. Глубина экстинкции в рассматриваемых нами случаях составляет несколько десятков микрометров, на большую глубину излучение не проникает, и находящиеся глубже атомы вклад в интеграл практи-

чески не вносят.

Заметим также, что вид матрицы распространения (5) позволяет рассматривать предельный случай отражения с нулевым поглощением. Пусть коэффициент ослабления $\mu \equiv 0$, тогда T = exp(0) и не зависит от глубины проникновения излучения. Это также означает, что форма спектра перестанет изменяться при изменении L.

Рассмотренный подход позволяет более правильно описать резонансное рассеяние рентгеновского излучения анизотропным кристаллом, а также учесть влияние анизотропии поглощения на азимутальную и спектральную зависимости интенсивности дифракционного отражения, что будет продемонстрировано на примере рассмотрения резонансной дифракции в кристалле отробората железа.

2. РЕЗОНАНСНАЯ ДИФРАКЦИЯ СИНХРОТРОННОГО ИЗЛУЧЕНИЯ В КРИСТАЛЛЕ Fe_3BO_6

Кристалл ортобората железа принадлежит орторомбической сингонии, группа Pnma (№2), параметры ячейки: $a=10.048~\text{Å},\ b=8.531~\text{Å},\ c=4.466~\text{Å}.$ Атомы железа занимают два неэквивалентных положения: частное 4(c) с симметрией m и общее 8(d). Эта группа симметрии допускает погасание отражений вне резонансной области c индексами $h00,\ h=2n+1;\ 0k0,\ k=2n+1;\ 00l,\ l=2n+1;\ hk0,\ h=2n+1;\ 0kl,\ k+l=2n+1,\ которые вблизи резонансной энергии наблюдаются как «запрещенные» отражения. Структурный фактор <math>F(\mathbf{H})$ таких отражений представляет собой тензор, являющийся суммой двух слагаемых c разными спектральными и угловыми свойствами:

$$F_{ij}(\mathbf{H}) = F_{ij}^{4c}(\mathbf{H}) + F_{ij}^{8d}(\mathbf{H}).$$
 (9)

Симметрия положений обоих положений атомов железа допускает существование диполь-дипольных, диполь-квадрупольных и квадруполь-квадрупольных резонансных переходов. Спектральная зависимость запрещенных отражений определяется интерференцией излучения, рассеянного обеими позициями железа. Хотя диполь-дипольный тензорный атомный фактор, соответствующий атомам железа в позиции 4(с) содержит 4 независимых компоненты, а атомов в позиции 8(d) — шесть компонент, для отражений h00, h=2n+1 в случае диполь-дипольного перехода остается одна компонента для обеих позиций, для диполь-квадрупольного перехода 3 компоненты, а для квадруполь-квадрупольного -4 [23]. Энергетические спектры запрещенных отражений 300, 500 и 700 были измерены при комнатной температуре на линии XMaS синхротрона ESRF [23]. Падающее излучение было поляризовано в плоскости орбиты (σ -поляризация), энергия излучения была настроена на К-край поглощения железа с использованием монохроматора Si(111). Образец представлял собой пластину

с гранями (±100) размером в несколько квадратных миллиметров и толщиной в несколько сотен микрон. Анализ поляризации рассеянного излучения не проводился. В работе [23] показано, что диполь-квадрупольный и квадруполь-квадрупольный переходы влияют на спектральную зависимость в предкраевой области, тогда как в области главных пиков существуют лишь диполь-дипольные тензорные компоненты, причем в структурном факторе остается только одна, равная сумме соответствующих компонент, соответствующих каждой из атомных позиций, с учетом геометрического фактора:

$$F_{dd}(h = 2n + 1, 0, 0) = 8[D_{xz}(4c)\cos(2\pi h x_{4c}) + D_{xz}(8d)\cos(2\pi h x_{8d})] \begin{pmatrix} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0 \end{pmatrix}.$$
(10)

Соответственно матрица амплитуды рассеяния в поляризационных индексах имеет вид:

$$F_{dd}(h = 2n + 1, 0, 0) = 8[D_{xz}(4c)\cos(2\pi h x_{4c}) + D_{xz}(8d)\cos(2\pi h x_{8d})]\cos(\phi)\cos(\theta_B)\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
(11)

Из (10) следует, что спектральная форма компонент структурной амплитуды, соответствующих рассеянию/поглощению РИ атомами железа двух позиций по отдельности, является универсальной для рефлексов типа h00, но их вклады в структурную амплитуду определяются геометрическим фактором. Кроме того, диполь-дипольное рассеяние на атомах железа происходит исключительно с поворотом поляризации. В работе [23] показано, что для отражений 300 и 500 геометрические факторы, отвечающие позициям 4(c) и 8(d), имеют разные знаки, а для — 700 одинаковые. Однако, отражения 300 и 500 являются сильными, что описано как результат конструктивной интерференции волн, рассеянных атомами двух позиций, а отражение 700 является слабым.

На рис. 4 приведены рассчитанные с помощью программы FDMNES [34] действительные и мнимые части структурной амплитуды, соответствующей трем отражениям: 700, 500 и 300, обусловленные рассеянием РИ на атомах железа в положениях 4(c) и 8(d). Из рисунка видно, что спектральные формы парциальных вкладов в амплитуду рассеяния одинаковы для всех отражений, но при отражении от кристалла они суммируются с разными весовыми множителями. Нельзя утверждать, что тип интерференции во всем спектральным интервале одинаков, но в области главного пика, действительно, для отражений 300 и 500 амплитуды складываются, а для отражения 700 они вычитаются. Таким образом, тип интерференции определяется не только геометрическим множителем, но и знаком тензорной компоненты при данном значении энергии.

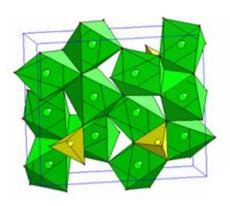


Рис. 2. Элементарная ячейка ортобората железа. Показаны полиэдры атомов Fe(4c) (желтые тетраэдры) и Fe(8d) (зеленые полиэдры)

Обработка спектров измеренных отражений в работе [23] проводилась с помощью программы FDMNES, при этом не учитывалась анизотропия коэффициента поглощения, которая может быть существенной для кристаллов орторомбической сингонии. Целью настоящего исследования является изучение влияния анизотропии коэффициента поглощения, а также эффектов двулучепреломления, на интенсивность, спектральную форму и азимутальную зависимость запрещенных отражений. Мы ограничимся рассмотрением диполь—дипольного вклада в резонансное рассеяние РИ, который играет основную роль в формировании спектра в области главных пиков.

3. АНИЗОТРОПИЯ КОЭФФИЦИЕНТА ПОГЛОЩЕНИЯ В КРИСТАЛЛЕ ${ m Fe_3BO_6}$

В точечной группе ттт, отвечающей симметрии ортобората железа, дипольный вклад в коэффициент поглощения описывается тензором второго ранга с тремя независимыми коэффициентами, квадрупольный — тензором четвертого ранга с 4 независимыми коэффициентами [25]. Обычно для вычисления коэффициента поглощения используется выражение, предполагающее, что поляризация излучения не изменяется в процессе поглощения. Однако, в современной рентгеновской поляриметрии учитывается тот факт, что поляризация распространяющегося в анизотропной среде излучения меняется. Этот факт является тривиальным для оптики анизотропных сред, но в рентгеновской области обычно не учитывается, так как рентгеновская анизотропия восприимчивости является слабой. В дальнейшем для описания поглощения, распространения и дифракции излучения в кристалле мы будем использовать систему координат, показанную на рис. 3. Сам по себе процесс поглощения представляет собой однофотонный процесс и не может описывать изменение поляризации. Однако, одновременно с поглощением происходит и рассеяние излучения, которое в анизотропном случае приводит, в том числе, к изменению поляризации излучения. Таким образом, коэффициент поглощения складывается из истинного поглощения и уменьшения интенсивности за счет рассеяния. В процессе распространения излучения в анизотропной среде может изменяться поляризация излучения, что обычно не учитывается в стандартной теории.



Рис. 3. Геометрия эксперимента при измерении отражений типа h00 в ортоборате железа.

Атомы железа двух кристаллографически неэквивалентных позиций находятся в окружениях с разной симметрией, и, соответственно, обеим позициям отвечают разные коэффициенты поглощения и рассеяния. Придерживаясь формализма, изложенного в разделе 2, для каждой позиции железа нужно ввести матрицу коэффициентов ослабления $\mu_{\alpha\beta}$, коэффициенты которой комплексны и нужны для построения матрицы распространения излучения в кристалле. Сложность состоит в том, что эти коэффициенты различны для двух неэквивалентных позиций железа, и среду характеризует их сумма. На рис. 5 представлены спектральные зависимости действительных и мнимых частей коэффициентов матрицы $\mu_{\sigma\sigma}$ и $\mu_{\sigma\pi}$ для ортобората железа, вычисленные с помощью программы FDMNES для отражения 300. Показаны как коэффициенты, соответствующие двум позициям железа, так и суммарный коэффициент матрицы, который в дальнейшем будет учитываться в расчетах.

Также на рисунке продемонстрировано, что коэффициенты матрицы обладают угловой зависимостью, а также то, что недиагональные коэффициенты матрицы гораздо слабее диагональных, т.е. эффекты анизотропии невелики. Можно показать, что для рассматриваемой геометрии (рис. 3) азимутальные зависимости приведенных коэффициентов имеют вид (предполагается, что падающее излучение имеет e_{σ} -поляризацию): $\mu_{\sigma\sigma}=e_{\sigma}^+Fe_{\sigma}=f_1+(f_2-f_1)\cos(2\phi)$ и $\mu_{\sigma\pi'}=e_{\sigma}^+Fe_{\pi'}=\frac{1}{2}(f_1-f_2)\sin(2\phi)\sin(\theta)$, где f_1,f_2,f_3 три независимых коэффициента, характеризующих поглощение в орторомбической сингонии.



Рис. 4. Действительные и мнимые части структурного фактора для отражений $a-700,\, 6-500,\, e-300$

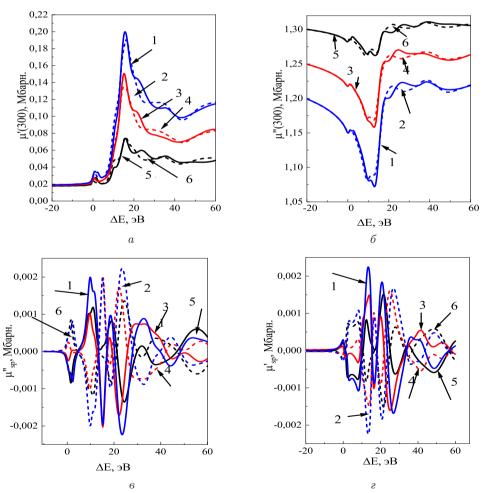


Рис. 5. Действительные и мнимые части коэффициентов матрицы μ : $a-1-\mu'_{\sigma\sigma}$ (Fe₃BO₆), $\phi=0^\circ$; $2-\mu'_{\sigma\sigma}$ (Fe₃BO₆), $\phi=90^\circ$; $3-\mu'_{\sigma\sigma}$ (Fe₈(d)), $\phi=0^\circ$; $4-\mu'_{\sigma\sigma}$ (Fe₈(d)), $\phi=90^\circ$; $5-\mu'_{\sigma\sigma}$ (Fe₄(c)), $\phi=0^\circ$; $6-\mu'_{\sigma\sigma}$ (Fe₄(c)), $\phi=90^\circ$; $6-\mu'_{\sigma\sigma}$ (Fe₃BO₆), $\phi=0^\circ$; $2-\mu''_{\sigma\sigma}$ (Fe₃BO₆), $\phi=90^\circ$; $3-\mu''_{\sigma\sigma}$ (Fe₄(c)), $\phi=0^\circ$; $4-\mu''_{\sigma\sigma}$ (Fe₃BO₆), $\phi=90^\circ$; $3-\mu''_{\sigma\sigma}$ (Fe₈(d)), $\phi=0^\circ$; $4-\mu''_{\sigma\sigma}$ (Fe₈(d)), $\phi=90^\circ$; $3-\mu''_{\sigma\sigma}$ (Fe₈(d)), $\phi=0^\circ$; $4-\mu'_{\sigma\sigma}$ (Fe₈(d)), $\phi=90^\circ$; $3-\mu''_{\sigma\sigma}$ (Fe₈(d)), $\phi=0^\circ$; $4-\mu'_{\sigma\sigma}$ (Fe₈(d)), $\phi=90^\circ$; $3-\mu''_{\sigma\sigma}$ (Fe₈(d)),

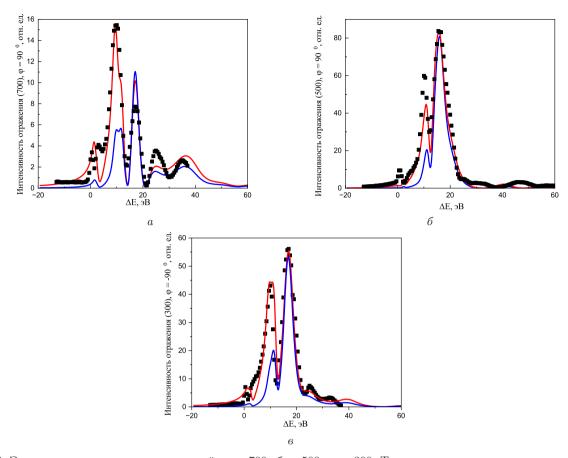
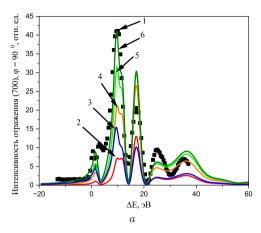



Рис. 6. Энергетические спектры отражений: a-700, b-500, b-300. Точки — эксперимент, красная кривая — расчет с учетом анизотропных эффектов, синяя — расчёт с изотропным коэффициентом поглощения

4. ВЛИЯНИЕ ДИХРОИЗМА И ДВУЛУЧЕПРЕЛОМЛЕНИЯ НА СПЕКТРЫ ЗАПРЕЩЕННЫХ ОТРАЖЕНИЙ h00 В ОРТОБОРАТЕ ЖЕЛЕЗА

Была написана программа на языке Python, peaлизующая изложенный выше формализм с использованием коэффициентов матриц распространения и рассеяния. Эта программа использована для моделирования спектров запрещенных отражений типа h00, h = 2n + 1 в ортоборате железа и сравнения с экспериментальными данными, полученными в работе [23]. Также проводилось сравнение и результатами расчета с учетом изотропного коэффициента поглощения. Использование матрицы распространения позволяет также рассмотреть, как влияет глубина проникновения на спектральную форму запрещенных отражений. На рис. 7 представлены рассчитанные зависимости интенсивности рефлексов 700 и 500 от энергии, при этом толщина кристалла, участвующая в поглощении и рассеянии фотонов, варьировалась. Коэффициенты матрицы $\mu_{\alpha\beta}$ рассчитаны с помощью программы FDMNES (см. рис. 5). Видно, что при изменении толщины кристаллического слоя до примерно 20 мкм форма спектра значительно изменяется, после чего приходит к некому постоянному виду, хорощо согласующемуся с экспериментальными результатами, и это означает, что эта толщина описывает глубину экстинкции. Влияние глубины проникновения на форму спектров необходимо учитывать при изучении резонансной дифракции РИ в кристаллических тонких пленках.

На рис. 6 (а-в) приведены результаты обработки спектров отражений 300, 500 и 700 в кристалле ортобората железа Fe₃BO₆. Была использована наша программа, учитывающая эффекты дихроизма и двулучепреломления. На рисунках показаны расчетные спектры в сравнении с экспериментальными данными и с учетом только изотропного коэффициента поглощения. Приоритетное внимание уделялось хорошему совпадению с экспериментальными данными в области главных пиков, так как рассматривался в основном диполь-дипольный вклад в резонансное рассеяние РИ. Результаты расчетов демонстрируют необходимость учета эффектов дихроизма и двулучепреломления при обработке спектров запрещенных отражений в анизотропных средах. Для лучшего совпадения с экспериментальными данными в предкраевой области необходимо учитывать вклады высших порядков, что требует дальнейшего совершенствования используемой программы.

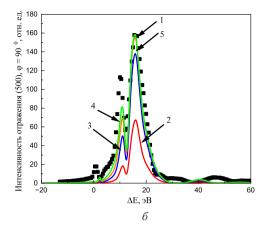


Рис. 7. Расчёты энергетических спектров отражений a-700, b-500 при варьировании глубины проникновения излучения l. l-9ксперимент; 2-l=1 мкм; 3-l=3 мкм; 4-l=10 мкм; 5-l=20 мкм; 6-l=90 мкм

ЗАКЛЮЧЕНИЕ

В отличие от оптики видимого диапазона, где анизотропия среды приводит к ряду хорошо известных оптических эффектов, в рентгеновской оптике анизотропные эффекты не столь сильны и проявляются только вблизи определенных длин волн, близких к краям поглощения атомов вещества, не только на пропускание, но и в рассеянии. В резонансной рентгеновской дифракции оказываются существенными не только анизотропия кристалла в целом, но также локальная анизотропия положения резонансных атомов, приводящая часто к появлению отражений, запрещенных правилами погаса-

ний пространственной группы — запрещенных отражений. Для обработки спектров запрещенных отражений обычно используется кинематическая теория дифракции РИ, поскольку глубина проникновения излучения вблизи резонансных энергий мала, но обычно не учитывается изменение поляризации излучения при распространении в кристалле вследствие эффектов дихроизма и двулучепреломления, обусловленных анизотропией среды. Однако в случае кристаллов низкой симметрии эти эффекты могут оказать заметное влияние на спектральную и угловую зависимости запрещенных отражений, что продемонстрировано в данной статье на примере обработки спектров запрещенных отражений в кристалле ортобората железа.

- Dmitrienko V.E., Ishida K., Kirfel A., Ovchinnikova E.N. // Acta Cryst. A 61. 481 (2005).
- [2] Дмитриенко В.Е., Овчинникова Е.Н. // Кристаллография. 48. S59 (2003).
- [3] Murakami Y., Kawasa H., Tanaka M., Arima T. et al. // Phys. Rev. Lett. 80, 1932 (1998)
- [4] Paolasini L. // Collection SFN. 13. 03002 (2014).
- [5] Hodeau J.L., Favre-Nicolin V., Bos S. et al. // Chem. Rev. 101. 1834 (2001).
- [6] Овчинникова Е.Н., Орешко А.П., Дмитриенко В.Е. // УФН. **195**, № 4. 416 (2025).
- [7] Templeton D.H., Templeton L.K. // Acta Cryst. A 41. 365 (1985).
- [8] Dmitrienko V.E. // Acta Cryst. A 39 29 (1983).
- [9] Dmitrienko V.E. // Acta Cryst. **A40**. 89 (1984).
- [10] Templeton D.H., Templeton L.K. // Phys. Rev. B 49. 14850 (1994).
- [11] Carra P., Thole T. // Rev. Mod. Phys. 66. 1509 (1994).
- [12] Gibbs D., Moncton D.E., D'Amico K.L. // J. Appl. Phys. 57, 3619 (1985).
- [13] Ovchinnikova E.N., Dmitrienko V.E. // Acta Cryst. A. **56**. 2 (2000).
- [14] Ji S., Song C., Koo J. et al. // Phys. Rev. Lett. 91. 257205 (2003).

- [15] Dmitrienko V. E., Ovchinnikova E.N., Ishida K. et al. // Письма ЖЭТФ. 69. 885 (1999).
- [16] Dmitrienko V.E., Ovchinnikova E.N. // Acta Cryst. A 56. 2 (2000).
- [17] Collins S.P., Laundy D., Dmitrienko V.E. // Phys. Rev. B. 68. 064110 (2003).
- [18] Beutier G. Collins S. P., Nisbet G. et al. // Phys. Rev. 92. 214116 (2015).
- [19] Richter C., Novikov D.V., Mukhamedzhanov E.Kh., Borisov M.M. et al. // Phys. Rev. B 89. 094110 (2014).
- [20] Kokubun J., Watanabe A., Uehara M. et al. // Phys. Rev. B. 78.115112 (2008).
- [21] Subias G, Garcia J., Proietti M.G. et al.// Phys. Rev. B. 70. 155105 (2004).
- [22] Мухамеджанов Э.Х., Ковальчук М.В., Борисов М.М. и др. // ЖЭТФ. 139. 110 (2011).
- [23] Beutier G., Ovchinnikova E., Collins S.P. et al. // J. Phys.: Condens. Matter. 21. 265402 (2009).
- [24] Lawrence Bright E., Ovchinnikova E.N., Harding L.M. et al. // Phys. Rev. B. 110. 125138 (2025).
- [25] Brouder Ch. // J. Phys.: Condens. Matter. 2. 701 (1990).
- [26] Schmitt A.T., Joly Y., Schulze K.S. et al. // Optica.8. 56 (2021).

- [27] Lovesey S. W., Collins S.P. // J. Synch. Rad. 8, 1065 (2001).
- [28] Collins S.P., Dolbnya I., Palmer B.A. et al. // Journal of Physics: Conference Series. 425. 132015 (2013).
- [29] Joly J., Collins S.P., Grenier S. et al. // Phys. Rev. B. 86, 220101(R) (2012).
- [30] Collins S.P., Tolkiehn M., Laurus T., Dmitrienko V.E. // Eur. Phys. J. Special Topics. 208, 75 (2012).
- [31] Орешко А.П. // ЖЭТФ. 144. 253 (2013).
- [32] Беляков В.А. // УФН. **115**. 553 (1975).

- [33] Дэсеймс Р. Оптические принципы диффракции рентгеновских лучей (М.: ИИЛ, 1950) (James R.W. The optical principles of the diffraction of X-rays. London: Bell and Sons LTD, 1962).
- [34] https://fdmnes.neel.cnrs.fr./
- [35] Henke B.L., Gullikson E.M., Davis J.C. // X-ray interactions: photoabsorption, scattering, transmission, and reflection at E=50-30000 eV, Z=1-92, Atomic Data and Nuclear Data Tables 54, (no.2).

Dichroism and Birefringence in X-ray Spectra of Forbidden Reflections

M.V. Gorbunova^a, E.N. Ovchinnikova, A.P. Oreshko

¹Department of Solid State Physics, Faculty of Physics, Lomonosov Moscow State University.

Moscow 119991, Russia

E-mail: ^a Gorbunova.mv20@physics.msu.ru, ^b OvchinnikovaEN@my.msu.ru

An approach employing the transmittance matrix has been implemented to calculate the intensity of Bragg reflections in resonant X-ray diffraction. This enables the inclusion of anisotropic effects that lead to a change in the polarisation of radiation during propagation. Using the example of processing the spectra of forbidden reflections in an iron orthoborate crystal, performed with a program based on this approach, an improvement in the agreement between calculated results and experimental data is demonstrated in comparison with standard methods.

PACS: 61.05.C-, 61.50.Ah, 78.70.Ck, 78.70.Dm.

Keywords: X-ray diffraction, X-ray spectroscopy, optical activity, anisotropy of susceptibility.

Received 30 June 2025.

English version: Moscow University Physics Bulletin. 2025. 80, No. . Pp. .

Сведения об авторах

- 1. Горбунова Мария Владимировна студентка; тел: (495)306-57-09; e-mail: Gorbunova.mv20@physics.msu.ru.
- 2. Овчинникова Елена Николаевна доктор физ.-мат. наук, профессор; тел.: (495) 939-23-97, e-mail: OvchinnikovaEN@my.msu.ru.
- 3. Орешко Алексей Павлович доктор физ.-мат. наук, профессор; тел. (495)939-23-87; e-mail: oreshko@mail.ru.