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Предлагается непертурбативное вычисление перенормированной функции Грина безмассово-
го действительного скалярного поля φ в трехмерном пространстве с двумерным потенциалом
нулевого радиуса, локализованным на бесконечной прямой. Подобный потенциал соответству-
ет экзотическому пределу ξ → ∞, β′ ∼ 1/ξ поляризации вакуума в пространстве космической
струны. Подход предполагает перенормировку константы связи λ. Перенормированные евкли-
дова и адамарова функции Грина представлены в эквивалентных формах в виде однократных
интегралов от специальных функций. С использованием перенормированной функции Ада-
мара вычислены перенормированные вакуумные средние квадрата поля и оператора тензора
энергии-импульса, исследованы асимптотические случаи.
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ВВЕДЕНИЕ

Пространства с коническими особенностями при-
влекли к себе внимание достаточно давно и преж-
де всего в связи с гипотезой космических струн
[1–5]. Действительно, в простейшем случае прямо-
линейной струны пространство-время представля-
ет собой произведение конуса на двумерное про-
странство Минковского. Позже было установлено,
что геометрически некоторые дефекты кристаллов
описываются точно так же [6]. Далее аналогичные
решения рассматривались и в случае пространств
с отличным от четырех числом измерений [7]. Важ-
но, что в упомянутых выше приложениях характе-
ризующий конус дефицит угла крайне мал (поряд-
ка 10−5) и коническая поверхность почти неотличи-
ма от плоскости — но не на вершине конуса, где тен-
зор Римана имеет дельта-особенность. В результате
в рассматриваемом случае скалярного поля в урав-
нении Клейна–Гордона появляется выражение ви-
да λδn(x) [8, 9], где δn(x) обозначает n-мерную
дельта-функцию, определенную в d-мерном евкли-
довом пространстве (0 6 n 6 d). Таким образом,
в операторе поля появляется эвристическое выра-
жение

∆d + λδn(x) , (1)

и следует прояснить, каким образом следует пони-
мать эту формально записанную сумму.

Попытки преодоления этой проблемы предприни-
мались неоднократно [10–12], но в одних случаях
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они не являются в должной мере последовательны-
ми, а в других, как это было отмечено в работах
[13, 14], сопряжены с необходимостью перенорми-
ровки константы взаимодействия λ. Следователь-
но, ответ становится зависящим от перенормиро-
ванной константы, значение которой следует опре-
делять независимо. В частности, при пертурбатив-
ных вычислениях [7, 15, 16] необходимость перенор-
мировки возникает в каждом порядке теории возму-
щений.

Аналогичная проблема возникает и в рамках
нерелятивистской квантовой механики. Однако там
был предложен и широко обсуждался альтернатив-
ный подход, основанный на замене неопределенно-
го с математической точки зрения выражения (1)
на самосопряженное расширение оператора Лапла-
са [17–20] в пространстве с выколотой точкой. В ря-
де работ [16, 21–25] мы предложили распростра-
нить этот подход на квантовую теорию поля.

Однако самосопряженное расширение оператора
Лапласа в случае искривленного пространства по-
ка не известно. Поэтому мы рассмотрели упрощен-
ную модель. Исходным для предложенной модели
является то, что основным в формальном выраже-
нии (1) в случае малого углового дефицита явля-
ется, безусловно, наличие дельта-образного члена.
Поэтому, пользуясь малостью дефицита угла, мы
сочли возможность им пренебречь, а учесть имен-
но наличие в операторе поля сингулярного слага-
емого соответствующей размерности. Таким обра-
зом, в рамках предложенной модели мы эффектив-
но приходим к задаче о линейном источнике потен-
циала нулевого радиуса, в поперечном сечении к ко-
торому возникает эффективное одноцентровое вза-
имодействие на плоскости.
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Соответственно мы формально приходим к зада-
че в пространстве с равным двум числом простран-
ственных измерений. Так, в неоднократно рассмат-
ривавшемся в литературе случае космической стру-
ны сечение t, z = const (где z — координата вдоль
струны) пространства-времени представляет собой
конус и в уравнении поля появляется член с двумер-
ной дельта-функцией δ2(x). Случай (n = 2, d = 2)
был рассмотрен нами в работе [25] в технике само-
сопряженного расширения. Сейчас мы ограничим-
ся случаем (n = 2, d = 3), где предлагаем альтер-
нативный, прямой операторный подход, в рамках
которого непертурбативно рассмотрим задачу по-
ляризации вакуума безмассового действительного
скалярного поля.

Используется система единиц ~ = c = 1 и метри-
ка пространства-времени с сигнатурой (+−−−).

1. ФУНКЦИИ ГРИНА

Рассмотрим сингулярный эвристически записан-
ный потенциал U(x) = λδ2(x), зависящий толь-
ко от двух из трех декартовых координат про-
странственного сектора, где x = (x1, x2). Носитель
обобщенной функции δ2(x) есть бесконечно тонкая
прямая, совпадающая с третьей пространственной
осью, которую обозначим как z. Тогда для уравне-
ния Клейна–Гордона безмассового скалярного поля

[

�+ λδ2(x)
]

φ(t,x, z) = 0 ,

� := ∂2
t −∆2 − ∂2

z ,
(2)

где ∆2 — двумерный оператор Лапласа в плос-
кости (x1, x2), в евклидовой функции Грина
Gλ(τ, τ

′, z, z′;x,x′), (τ = it), проведем частичное
преобразование Фурье по переменным z = (τ, z):
используя однородность пространства по этим пе-
ременным, имеем:

Gλ(z − z′;x,x′) =

=
1

(2π)2

∫

G̃λ(q;x,x
′) e−iq(z−z′)d2q . (3)

Тогда G̃(q;x,x′) удовлетворяет уравнению

(

∂2

∂x2
1

+
∂2

∂x2
2

− q2 − λδ2(x)

)

G̃λ(q;x,x
′) =

= −δ2(x− x′) ,

где q = |q|. Используя свойство дельта-функции,
имеем:

(

∂2
1 + ∂2

2 − q2
)

G̃λ(q;x,x
′)− λδ2(x) G̃λ(q;0,x

′) =

= −δ2(x− x′) . (4)

Проведем дальнейшее преобразование Фурье по
переменным x:

G̃λ(q;x,x
′) =

∫

d2k

(2π)2
e−ikx Ḡλ(q;k;x

′) . (5)

Тогда, подставляя (5) в (4), получим

Ḡλ(q;k;x
′) =

eikx
′

q2 + k2
−

λ

q2 + k2
G̃λ(q;0,x

′) , (6)

где

G̃λ(q;0,x
′) =

∫

d2k

(2π)2
Ḡλ(q;k;x

′) .

Отсюда для λ = 0 (отсутствие взаимодействия)
имеем:

Ḡ0(q;k;x
′) =

eikx
′

q2 + k2
,

G̃0(q;x,0) =

∫

d2k

(2π)2
e−ikx

q2 + k2
,

откуда видно, что Ḡ0 и G̃0 зависят от q только как
от модуля (q). Интегрирование уравнения (6) по k
приводит к соотношению

G̃λ(q;0,x
′)
[

1 + λG̃0(q,0,0)
]

= G̃0(q,−x′,0) .

Выражая G̃λ(q;0,x
′) и подставляя в уравнение (6),

получаем выражение Ḡλ(q;k;x
′) через G̃0(q;x,0):

Ḡλ(q;k;x
′) =

eikx
′

q2 + k2
−

1

q2 + k2
G̃0(q;−x,0)

λ−1 + G̃0(q;0,0)
.

Интегрируя обратно с помощью (5), получаем вы-

ражение G̃λ(q;x,x
′) через G̃0(q;x,0):

G̃λ(q;x,x
′) = G̃0(q;x−x′,0)−

G̃0(q;x,0) G̃0(q;−x,0)

λ−1 + G̃0(q;0,0)
.

Наконец, подставляя в обратное преобразование
Фурье (3), получим полную функцию Грина:

Gλ(z − z′;x,x′) = G0(z − z′;x− x′)−

−

∫

d2q

(2π)2
e−iq(z−z′) G̃0(q;x,0) G̃0(q;−x,0)

λ−1 + G̃0(q;0,0)
,

где G0(z − z′;x − x′) — функция Грина пустого
пространства Минковского в отсутствие взаимодей-
ствия. G̃0(q;x,0) вычисляется с помощью двух таб-
личных интегралов [26]:

2π
∫

0

eiz cosϕdϕ = 2πJ0(z) ,

∞
∫

0

J0(au)

u2 + c2
u du = K0(ac) ,

(7)

где J0(·) — бесселева функция первого рода,K0(·) —
модифицированная функция Бесселя второго рода
(функция Макдональда). Это дает

G̃0(q;x,0) =
1

2π
K0(qr) , r := |x| . (8)

При вычислении G̃0(q;0,0) предел r → 0+ логариф-
мически стремится к бесконечности; воспользуемся
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стандартным в квантовой теории поля представле-
нием:

G̃0(q;0,0) =

∫

d2k

(2π)2
1

q2 + k2
≃

1

4π
ln

Λ2

q2
, (9)

где Λ — ультрафиолетовый параметр обрезания.
Полученный результат приводит к заключению,
что константа связи λ должна быть перенормиро-
вана согласно

1

λren
=

1

λ
+

1

4π
ln

Λ2

µ2
, (10)

где µ — константа с физической размерностью об-
ратной длины (массы), необходимая для обезразме-
ривания аргумента логарифма.

Сопоставляя (9) с выражением (8), формальный
предел функции Макдональда соответствует

K0(q0
+) ≃ ln

Λ

q
, Λ → +∞ . (11)

Подставляя формулы (8) и (9), получим:

Gλ(x, x
′) = G0(x− x′)−

1

(2π)4

∫

d2q e−iq(z−z′)×

×K0(qr)K0(qr
′)

[

1

λren
−

1

2π
ln

q

µ

]−1

.

Обозначим κ = µ exp(2π/λren), в плоскости q вве-
дем полярную систему координат и проинтегриру-
ем по полярному углу с помощью (7):

Gλ(x, x
′) = G0(x− x′)+

+
1

(2π)2

∞
∫

0

J0(q|z − z′|)
K0(qr)K0(qr

′)

ln(q/κ)
qdq .

Функция G0(x − x′) является функцией Грина
в отсутствие взаимодействия, поэтому для опи-
сания эффектов, связанных именно с наличием
дельта-потенциала, ее можно считать «нулевым
уровнем» и опустить; тогда остаток представляет
собой перенормированную функцию Грина:

Gren
λ (x, x′) =

1

(2π)2

∞
∫

0

J0(q|z − z′|)×

×
K0(qr)K0(qr

′)

ln(q/κ)
qdq . (12)

Формально записанный интеграл проходит через
простой полюс в точке q = κ > 0, т.е. расходится
в римановом смысле, поэтому следует прояснить,
в каком смысле можно понимать это выражение.
Используя свойства

H
(1)
0 (ix) =

2i

π
K0(x) , J0(ix) = I0(x) ,

H
(1)
0 (z) ∼

( 2

πz

)1/2

ei(z−π/4),

где x > 0, Imz > 0, H
(1)
0 (·) — бесселева функ-

ция третьего рода (функция Ханкеля первого ро-
да), а I0(·) — модифицированная функция Бессе-
ля первого рода (функция Инфельда), выражение
(12) можно представить в виде сходящегося рима-
нова интеграла от произведений функций Томсона
(Кельвина) нулевого порядка kei, ker, bei и ber: при
r + r′ > |z − z′|

Gren
λ (x, x′) =

1

π2

∞
∫

0

A+B− +A−B+

π2 + 16 ln2(u/κ)
udu , (13)

где введены

A+ = πber(|z − z′|u) + 4 ln(u/κ) bei(|z − z′|u),

A− = πbei(|z − z′|u)− 4 ln(u/κ) ber(|z − z′|u),

B+ = kei(ur) ker(ur′) + kei(ur′) ker(ur),

B− = ker(ur) ker(ur′)− kei(ur) kei(ur′) .

Непосредственной проверкой с использованием
модифицированного уравнения Бесселя нулевого
порядка

(

∂2

∂r2
+

1

r

∂

∂r

){

bei(ur)
ber(ur)

}

= u2

{

ber(ur)
−bei(ur)

}

(и аналогично для kei и ker), можно независимо убе-
диться, что Gren

λ (x, x′) в форме (13) действительно
удовлетворяет уравнению

[

∆4 − λδ2(x)
]

Gren
λ (z − z′;x,x′) =

= −λδ2(x− x′)G0(z − z′;x− x′) ,

т.е. является перенормированной евклидовой функ-
цией Грина в координатном представлении. Теперь
функция Грина корректно определена выражением
(13). Выясним, какому обходу полюса в формаль-
ном выражении (12) это соответствует: преобразуя
интеграл обратно к функциям Инфельда и Ханке-
ля и замыкая контур на бесконечно удаленной од-
ной восьмой окружности arg y ∈ [π/4, π/2], мы по-
лучим

Gren
λ (x, x′) =

1

16
Re

∫

L

I0(y|z − z′|)×

×
H

(1)
0 (yr)H

(1)
0 (yr′)

ln(y/κ)− iπ/2
ydy , (14)

где путь интегрирования L состоит из прямых от-
резков1 [0, i(κ− ǫ)], [i(κ+ ǫ),+i∞] мнимой оси и по-
луокружности y = iκ + ǫeiϕ, где ϕ ∈ [−π/2, π/2] —
так, чтобы полюс не вошел внутрь замкнутого кон-
тура интегрирования. Нетрудно видеть, что инте-
грал по полуокружности обхода полюса в пределе
ǫ → 0+ равен

−
i

4π
κ
2J0(κ|z − z′|)K0(κr)K0(κr

′) ,

1 Точка ветвления бесселевых функций y = 0 обходится со-
ответственно и не дает вклада в исследуемый контурный
интеграл.
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т.е. не содержит действительной части, поэтому ис-
комое выражение задается интегралами по двум от-
резкам: вводя y = iq, получим

Gren
λ (x, x′) = lim

ǫ→0+

1

(2π)2
×

×

∫

|q−κ|>ǫ

θ(q)J0(q|z − z′|)
K0(qr)K0(qr

′)

ln(q/κ)
qdq .

Это не что иное, как интеграл (12), понимаемый
в смысле главного значения по Коши, который схо-
дится для данного подынтегрального выражения.
Тогда итоговое выражение для перенормированной
евклидовой функции Грина имеет вид

Gren
λ (x, x′) =

1

(2π)2

∞
∫

0

J0(q|z − z′|)×

×
K0(qr)K0(qr

′)

ln(q/κ)
qdq . (15)

Переходя от евклидовой функции Грина к соот-
ветствующей перенормированной функции Адама-
ра Dren

λ исходного уравнения (2), получим

Dren
λ (x, x′) =

1

(2π)2

∞
∫

0

dq q
K0(qr)K0(qr

′)

ln(q/κ)
×

×

{

I0(qτ+), |∆t| > |∆z|;
J0(qτ−), |∆z| > |∆t|,

(16)

где τ± :=
√

±(∆t2 −∆z2), ∆t := t− t′, ∆z := z− z′.
Оба выражения верны в секторе τ2± < (r+ r′)2. Нас
будет интересовать случай совпадающих перемен-
ных (τ± = 0, r = r′ > 0); он как раз удовлетворяет
этому условию. В плоскости Ox1x2 функции Грина
Gren

λ и Dren
λ не зависят от угла между x и x′.

Поскольку бесселевы функции удовлетворяют со-
отношениям

∆2J0(κr) = −κ
2J0(κr) , ∆2I0(κr) = κ

2I0(κr) ,

∆2K0(κr) = κ
2K0(κr) − 2πδ2(x) ,

то функция Dren
λ (x, x′) удовлетворяет уравнению

�Dren
λ =

1

2π
δ2(x)

∞
∫

0

dq q
I0(qτ+)K0(qr

′)

ln(q/κ)
(17)

в секторе r′ > τ+ > 0, тогда с учетом (11) действие
оператора поля с дельтаобразным потенциалом да-
ет

[

�+ λδ2(x)
]

Dren
λ =

λ

(2π)2
δ2(x)

∆t2 −∆z2 − r′2
, (18)

и то же при |∆z| > |∆t|, где использованы таблич-

ные интегралы [26]

∞
∫

0

J0(au)K0(cu)udu =
1

a2 + c2
,

∞
∫

0

I0(au)K0(cu)udu =
1

c2 − a2
.

Адамарова функция в представлении функций
Томсона равна

Dren
λ (x, x′) =

1

π2

∞
∫

0

Ã−B− − Ã+B+

π2 + 16 ln2(u/κ)
udu , (19)

где введены

Ã− = πber(τ+u)− 4 ln(u/κ) bei(τ+u) ,

Ã+ = πbei(τ+u) + 4 ln(u/κ) ber(τ+u) .

Итак, получены выражения для полной и пере-
нормированной функций Грина в модели с линей-
ным δ2-образным источником. Помимо координат,
результат зависит от единственного параметра κ

с размерностью обратной длины, который объеди-
няет информацию о перенормированной силовой
константе λren и параметре µ, введенном естествен-
ным образом для обезразмеривания аргумента ло-
гарифма. По сути, κ представляет собой характер-
ный масштаб масс с учетом точечного взаимодей-

ствия, который отсутствовал в изначальной тео-
рии, но будет входить в итоговые конечные выра-
жения. Соответственно его значение должно быть
получено из экспериментальных данных, например
из данных по длине рассеяния lsc на таком потен-
циале в нерелятивистском пределе [17]:

κ = 1/lsc .

2. ПОЛЯРИЗАЦИЯ ВАКУУМА

Значение функции Грина в совпадающих точках
дает перенормированное вакуумное среднее квадра-
та скалярного поля:2

〈φ2〉ren = {Dren
λ } . (20)

Подставляя (15), получим

〈

φ2(r)
〉

ren
=

1

(2π)2

∞
∫

0

qK2
0 (qr)

ln(q/κ)
dq . (21)

Соответствующее выражение 〈φ2(r)〉ren через функ-
ции Томсона равно
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Рис. 1. График функции J (z)
Рис. 2. График функции J (z) при логарифмическом
масштабировании оси абсцисс

〈

φ2(r)
〉

ren
=

1

π

∞
∫

0

−(8/π) ln(u/κ) kei(ur) ker(ur) + ker2(ur)− kei2(ur)

π2 + 16 ln2(u/κ)
udu ,

в силу bei(0) = 0, ber(0) = 1. Делая замену переменной ur → u, получим ответ в виде однопараметриче-
ского интеграла

〈

φ2(r)
〉

ren
=

1

π3r2
J (κr) , J (z) :=

∞
∫

0

−(8/π) ln(u/z) kei(u) ker(u) + ker2(u)− kei2(u)

1 + 16π−2 ln2(u/z)
udu . (22)

График функции J (z) представлен на рис. 1.

Отметим, что в интеграле (21) также допустима
замена переменных вида рескейлинга: соответствен-
но, функция J (z) представима в виде

J (z) =
z2π

4

∞
∫

0

qK2
0 (qz)

ln q
dq . (23)

Более наглядное представление дает логарифми-
ческое масштабирование оси абсцисс; график пред-
ставлен на рис. 2.

В пределе слабого взаимодействия при фик-
сированном r можно разложить J по малому
λren: в подынтегральном выражении на основ-
ной области формирования интеграла справедливо
2πλ−1

ren ≫ q/µ. Тогда

〈

φ2(r)
〉

ren
= −

λren

(2π)3

∞
∫

0

K2
0 (qr) qdq +O(λ2

ren) .

2 Здесь и далее значение Dren

λ
и ее производных, вычислен-

ное в совпадающих точках x = x′, обозначается фигурной
скобкой.

С помощью табличного интеграла [27]

∞
∫

0

Kµ(z)Kν(z) z
α−1dz =

=
Γ
(

α+µ+ν
2

)

Γ
(

α+µ−ν
2

)

Γ
(

α−µ+ν
2

)

Γ
(

α−µ−ν
2

)

23−αΓ (α)
(24)

(α > µ+ ν > 0) приходим к ответу:

〈

φ2(r)
〉

ren
= −

λren

16π3r2
+O(λ2

ren) . (25)

При фиксированном значении λren асимптотиче-
ские случаи получаются при больших по модулю
значениях (lnκr). Пренебрегая в (21) lnu по срав-
нению с lnκr на основной области формирования
интеграла и вычисляя интеграл по формуле (24),
получаем

〈φ2(r)〉ren = ±
1

8π2r2 lnκr
, (26)

где знак плюс соответствует ультрамалым
(lnκr ≪ −1), а знак минус — ультрабольшим
(lnκr ≫ 1) расстояниям до носителя сингулярного
потенциала.

Асимптотическое наличие логарифма в знамена-
теле J (z) проиллюстрировано на рис. 3: тангенс уг-
ла наклона равен −1 при больших ln |z| (кривые I
и III), наклонная асимптота соответствует теоре-
тической формуле (26).
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Рис. 3. График зависимости ln |J (z)| от ln
∣

∣ ln |z|
∣

∣. Кри-
вые I – III соответствуют одноименным участкам рис. 2

3. ПЕРЕНОРМИРОВАННЫЙ ТЕНЗОР
ЭНЕРГИИ-ИМПУЛЬСА

Тензор энергии-импульса действительнозначного
безмассового скалярного поля в четырехмерном
пространстве-времени задается выражением

T ν
µ = (1− 2ξ) ∂νφ∂µφ+

(

2ξ −
1

2

)

δνµ∂
λφ∂λφ−

− 2ξφ∇ν∂µφ+
1

2
ξδνµφ�φ , (27)

где ∇µ — ковариантная производная в выбран-
ных координатах, ξ — константа связи ска-
лярного поля с кривизной многообразия или
пространства-времени.

Поскольку φ удовлетворяет уравнению (2), слага-
емое �φ, сингулярное на носителе потенциала и за-
нуляющееся вне его, при r > 0 можно опустить. То-
гда вакуумное среднее перенормированного опера-
тора тензора энергии-импульса определяется произ-
водными от Dren

λ (x, x′), вычисленными в совпадаю-
щих точках t = t′, z = z′, r = r′:

〈

T ν
µ

〉

ren
= lim

x′→x

[

(1− 2ξ) ∂ν∂′
µ +

(

2ξ −
1

2

)

δνµ∂
λ∂′

λ−

−ξ
(

∇ν∂µ +∇′ν∂′
µ

)]

Dren
λ (x, x′) . (28)

Отметим, что интеграл J (z), заданный в фор-
ме (23), можно дифференцировать по z под знаком
главного значения интеграла.

Будем использовать цилиндрические координа-
ты t, z, r, ϕ. Вычислим первые производные в пре-
деле совпадающих точек:

{

∂tD
ren
λ

}

= −
{

∂′
tD

ren
λ

}

= 0 ,
{

∂zD
ren
λ

}

= −
{

∂′
zD

ren
λ

}

= 0 ,

{

∂rD
ren
λ

}

=
1

2π3r3

(

J1(κr) − 2J (κr)
)

, (29)

где введено J1(z) := zJ ′(z).

Соответственно вторые производные в пределе
совпадающих точек определяются выражениями:

{

∂2
tD

ren
λ

}

=
1

2π3r4
K,

{

∂2

∂r2
Dren

λ

}

=
1

2π3r4

[

2K− J1 + 2J
]

,

{

∂2

∂r∂r′
Dren

λ

}

=
1

2π3r4

[

J2 − 3J1 + 4J − 2K
]

,

(30)
где мы по-прежнему опускаем вклады, локализо-
ванные на самом источнике, и введены

J2(z) = z2J ′′(z) , K(z) =
π

4

∞
∫

0

dq q3
K2

0(q)

ln(q/z)
,

а все величины J , J1,2, K вычисляются при значе-
нии аргумента z = κr. В силу симметрий Dren

λ (x, x′)

{

∂2
zD

ren
λ

}

= −
{

∂2
tD

ren
λ

}

,
{

∂2

∂r′2
Dren

λ

}

=

{

∂2

∂r2
Dren

λ

}

.

Подставляя найденные значения через интегра-
лы одного переменного, найдем:

〈

T 0
0

〉

=
1

4π3r4

[

(

1− 4ξ
)

(

J2 − 3J1 + 4J
)

+
(

4ξ − 2
)

K
]

=
〈

T z
z

〉

〈

T r
r

〉

=
1

4π3r4

[

− J2 +
(

3− 4ξ
)

J1 +
(

8ξ − 4
)

J + 3K
]

〈

Tϕ
ϕ

〉

=
1

4π3r4

[

(

1− 4ξ
)(

J2 −K
)

+ (16ξ − 3)J1 + (4− 24ξ)J
]

. (31)

Недиагональные компоненты равны нулю.
Тогда след перенормированного вакуумного сред-

него тензора энергии-импульса равен

Sp 〈T 〉 =
1− 6ξ

2π3r4

[

J2(κr)−3J1(κr)+4J (κr)−K(κr)
]

.

В соответствии с теорией безмассового скалярно-
го поля [28] след исчезает при конформной связи
ξ = 1/6 четырехмерного пространства-времени.

Сохранение перенормированного ТЭИ.

Проверим, что тензор энергии-импульса (понима-
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емый в смысле перенормированных вакуумных
средних) сохраняется. Поскольку в цилиндриче-
ской системе координат метрика и компоненты
〈T ν

µ 〉 зависят только от радиальной координаты,
дивергенция ∇ν〈T

ν
µ 〉 для µ = t, z, ϕ зануляется ав-

томатически, а для µ = r сохранение эквивалентно
выполнению равенства

r
∂

∂r

〈

T r
r

〉

=
〈

Tϕ
ϕ

〉

−
〈

T r
r

〉

.

Используя полученные выражения (31) и свойства
бесселевых функций, получим искомое тождество:

∇ν〈T
ν
µ 〉 = 0 .

4. ЗАКЛЮЧЕНИЕ

Предложена модель, позволяющая описать тео-
ретикополевые эффекты в трехмерном плоском
пространстве-времени с сингулярным потенциалом
нулевого радиуса, имеющим линейный носитель.
Предложенная модель сводит исследование кванто-
вополевых эффектов к аналогичной задаче на фоне
двумерной плоскости с одной выколотой точкой (де-
фектом).

Описание дефекта осуществляется формальным
введением в уравнение поля дельтаобразного по-

тенциала λδ2(x). Предложено непертурбативно вы-
числять евклидову функцию Грина прямым опера-
торным исчислением неполных фурье-преобразова-
ний. Это требует перенормировки затравочной кон-
станты связи λ, как и для аналогичного точечного
двумерного потенциала нулевого радиуса. Резуль-
тат естественным образом зависит от масштабов
энергий (длины), что свойственно эффективно дву-
мерным полевым моделям.

Перенормированные функции Грина вычислены
и представлены в эквивалентных формах в терми-
нах однократных интегралов: римановых интегра-
лов и интегралов, сходящихся в смысле главного
значения по Коши. В качестве примера применения
полученных результатов непертурбативно вычисле-
ны перенормированные вакуумные средние квад-
рата поля 〈φ2(x)〉 и оператора тензора энергии-
импульса 〈Tµν(x)〉, вычисленные в виде однопара-
метрических интегралов J и K и их производных.

Рассмотренную модель можно считать важней-
шим шагом к построению последовательной тео-
рии непертурбативного исследования эффектов по-
ляризации вакуума в окрестности космической
струны.

Автор благодарит проф. Ю. В. Граца за ряд вы-
сказанных замечаний и предложений.
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