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Рассматривается задача восстановления неизвестного временно-зависимого гамильтониана
двухуровневой квантовой системы по данным о динамике системы. Предложен метод на основе
нейронной сети в схеме Neural ODE, в котором непрерывная эволюция состояния моделируется
интегрированием уравнения Шрёдингера с параметрической моделью гамильтониана, реали-
зованной сетью. В качестве входных данных используются измеренные временные ряды сред-
них значений операторов Паули для кубита. Обучение сети проводится путём минимизации
разности между экспериментально наблюдаемыми и смоделированными траекториями кван-
товых наблюдаемых. На примере моделирования динамики спина в переменном магнитном
поле показано, что предложенный подход позволяет с высокой точностью восстанавливать па-
раметры временного гамильтониана, не требуя прерывания квантовой эволюции. Результаты
демонстрируют, что Neural ODE-модель обеспечивает непрерывный учёт временного парамет-
ра и надёжную реконструкцию динамики системы в условиях ограниченных данных и шума.
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ВВЕДЕНИЕ

Постановка задачи восстановления временно-
зависимого квантового гамильтониана является
ключевой для контроля и верификации квантовых
устройств. В уравнении Шрёдингера зависимый от
времени гамильтониан полностью определяет ди-
намику квантовой системы. Знание структуры га-
мильтониана необходимо для настройки квантовых
вентилей и симуляторов, а также для исследова-
ния неидеальностей квантовых эволюций. Класси-
ческие методы квантовой томографии (например,
метод Чуанга–Нильсена) восстанавливают динами-
ку «чёрного ящика» только при предполагаемом
стационарном гамильтониане, используя прерыва-
ющие измерения. Эти подходы не дают прямой ин-
формации о временной зависимости гамильтониана
и обычно требуют проективных измерений до и по-
сле эволюции [2], что приводит к утрате информа-
ции о непрерывном процессе.

Существуют и другие схемы идентификации га-
мильтониана: например, алгоритмы на основе реа-
лизации собственных систем (ERA), методы сжато-
го восприятия и связанные машинные методы [3].
Однако при применении к временно-зависимым га-
мильтонианам такие методы чаще ограничены про-
стейшими случаями (одиночный спин или специ-
альный вид поля) [3]; их прямая оптимизация стал-
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кивается с задачей бесконечномерного простран-
ства параметров времени [3], [12]. Кроме того, ши-
роко используемые подходы, основанные на рекон-
струкции матрицы плотности и процессе кванто-
вой эволюции, предполагают статичную динамику
и прерывистое измерение системы [2], что не подхо-
дит для изучения непрерывно изменяющихся вза-
имодействий. Например, Siva et al. (2023) показа-
ли, что реконструкция полного временно-зависимо-
го гамильтониана требует прерывания или слабого
измерения во времени.

Для преодоления перечисленных ограничений це-
лесообразно использовать методы машинного обу-
чения, предназначенные для непрерывной эволю-
ции [9]. В частности, подход Neural ODE (введён-
ный Chen et al., 2018) позволяет параметризовать
производную состояния нейросетью и интегриро-
вать непрерывно во времени, избегая жёсткой дис-
кретизации [10]. Такая схема естественным образом
согласуется с формализмом квантовой динамики:
эволюция квантового состояния кубита подчиняет-
ся уравнению Шрёдингера, что аналогично инте-
грированию дифференциального уравнения состо-
яния в Neural ODE. Более того, как отмечают Cao
et al. (2025), обобщение Neural ODE для кванто-
вых систем (QNODE) позволяет эффективно вы-
числять градиенты по параметрам гамильтониана
через метод сопряжённых переменных [2, 11].

В работе мы рассматриваем два типа мыс-
ленных/экспериментальных сценариев, при
которых в качестве входных данных могут
выступать временные ряды средних значений
операторов Паули 〈σi〉(t).
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Ансамблевые проективные измерения (по-
вторные запуски). Система многократно подго-
тавливается в одном и том же начальном состоя-
нии, затем в серии независимых эксперименталь-
ных реализаций в момент времени t выполняется
проективное измерение соответствующего операто-
ра. Усреднение результатов по большому числу ре-
ализаций даёт аппроксимацию 〈σi〉(t). При этой по-
становке требуются независимые прерывающие из-
мерения, но каждое измерение выполняется на но-
вой копии системы, т.е. непрерывная эволюция от-
дельной копии при этом не прерывается.

Непрерывная слабая измерительная схема.
Альтернативно, 〈σi〉(t) может поступать как выход
модели слабых непрерывных измерений (например,
при непрерывном мониторинге), причём в этом слу-
чае эволюция одной и той же квантовой системы
фактически становится неунитарной и требует опи-
сания открытой системы. В настоящей работе мы
сосредоточены на замкнутой модели в качестве до-
казательства работоспособности метода.

Коэффициент при единичной матрице I (a0(t)
в разложении гамильтониана) не влияет на дина-
мику наблюдаемых (даёт только глобальную фазу)
и потому принципиально неидентифицируем из из-
мерений 〈σi〉(t). В основной реализации мы полага-
ем a0(t) = 0 и восстанавливаем только физически
измеримые члены при Паули-матрицах.

1. МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ

МОДЕЛИ

Для полного понимания работы нейронных се-
тей необходимо рассмотреть их математическое
описание. Основным строительным блоком нейрон-
ных сетей является искусственный нейрон. Каж-
дый искусственный нейрон принимает на вход неко-
торое количество значений, которые представля-
ют собой входные сигналы. Эти значения умножа-
ются на соответствующие веса связей и суммиру-
ются. После получения суммы взвешенных вход-
ных сигналов активация нейрона происходит через
функцию активации. Она определяет, будет ли ней-
рон активирован и какой будет его выходной сиг-
нал. Выходной сигнал нейрона передается следу-
ющему нейрону или используется для выполнения
конкретной задачи.

Связи между нейронами в нейронной сети так-
же имеют веса ω1, ω2, . . . , ωn, которые определяют
важность каждой связи при передаче информации.
Обучение нейронной сети заключается в настрой-
ке этих весов ω1, ω2, . . . , ωn, чтобы минимизировать
ошибку между предсказанным и ожидаемым ре-
зультатом:

||F (−→x )− F̃ (−→ω ,−→x )|| → 0.

Математически нейронные сети можно описать
как систему уравнений, где каждый нейрон выпол-
няет определенные операции с входными данны-
ми, весами связей и функцией активации. Обучение

нейронной сети обычно осуществляется через мето-
ды оптимизации, такие как градиентный спуск, где
минимизируется функция потерь.

Таким образом, математическое описание ней-
ронных сетей позволяет понять их работу на более
глубоком уровне и использовать этот знак для со-
здания эффективных моделей и алгоритмов искус-
ственного интеллекта. Нейронные сети продолжа-
ют развиваться и улучшаться, открывая новые воз-
можности для решения сложных задач и создания
инновационных технологий.

Нейродифференциальные уравнения
(NeuralODE) — это дифференциальные уравнения,
в которых правая часть задается нейросетью:

dz

dt
= f(z(t), t).

Пусть у нас есть наблюдения: (z0, t0),
(z1, t1), . . . , (zN , tN )

Найдём аппроксимацию f̂(z(t), t, θ) функции ди-
намики f(z(t), t). Рассмотрим простую задачу, ко-
гда у нас есть 2 наблюдения: в начале и в конце
траектории [1]. Изменяя параметр θ, можно мини-
мизировать функцию потерь:

L(z(t1)) = L(z(t0) +

∫ t1

t0

f(z(t), t, θ)dt).

Для минимизации L определим, как L зависит от
состояния в каждый момент времени z(t):

a(t) = −
∂L

∂z(t)
,

где a(t) — сопряженное состояние.

Теорема 1 (Уравнение для сопряжённого состоя-
ния). Пусть z(t) — гладкое решение обыкновенного

дифференциального уравнения

dz

dt
= f(z(t), t, θ),

и пусть L — скалярный функционал, зависящий

от траектории z(·), причём сопряжённое состоя-

ние определяется как

a(t) = −
∂L

∂z(t)
.

Тогда при условии гладкости f и дифференциру-

емости потока Tε выполнено

da(t)

dt
= − a(t)

∂f(z(t), t, θ)

∂z
.

Доказательство. Обозначим через Tε отображение
потока за малый шаг времени ε:

z(t+ ε) = Tε(z(t), t).

По определению сопряжённого состояния имеем
для всех ε достаточно малого

a(t) = −
∂L

∂z(t)
= −

∂L

∂z(t+ ε)

∂z(t+ ε)

∂z(t)
=

= a(t+ ε)
∂Tε(z(t), t)

∂z(t)
.
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Вычислим производную a(t) по определению:

da(t)

dt
= lim

ε→0

a(t+ ε)− a(t)

ε
.

Подставляя предыдущую тождественность, полу-
чаем

a(t+ ε)− a(t)

ε
=

a(t+ ε)− a(t+ ε)
∂Tε(z(t), t)

∂z(t)

ε
=

= a(t+ ε)

I −
∂Tε(z(t), t)

∂z(t)

ε
.

Используем асимптотическое представление яко-
биана потока при малом ε. Так как

z(t+ ε) = z(t) + εf(z(t), t, θ) + o(ε),

то

∂Tε(z(t), t)

∂z(t)
= I + ε

∂f(z(t), t, θ)

∂z
+ o(ε).

Отсюда

I −
∂Tε(z(t), t)

∂z(t)

ε
= −

∂f(z(t), t, θ)

∂z
+ o(1).

Подставляя в предел и учитывая непрерывность
a(t), получаем

da(t)

dt
= lim

ε→0
a(t+ ε)

(
−
∂f(z(t), t, θ)

∂z
+ o(1)

)
=

= −a(t)
∂f(z(t), t, θ)

∂z
,

что и требовалось доказать.

1.1. Метод обратного распространения через

ODE-солвер

В дискретных нейронных сетях обратное распро-
странение ошибки (backpropagation) основано на
правиле цепочки. Для Neural ODE ситуация слож-
нее: модель описывает непрерывную динамику:

ż(t) = f(z(t), t, θ), z(t0) = z0. (1)

Чтобы вычислить градиенты функции потерь
L(z(t1)), необходимо учитывать эволюцию состоя-
ния во времени.

Сначала решается прямая задача: интегрируем
систему от t0 до t1 и получаем состояние z(t1).

Определяем функцию потерь L = L(z(t1)).
Вводим сопряжённую переменную

a(t) =
∂L

∂z(t)
,

которая удовлетворяет уравнению

ȧ(t) = −

(
∂f

∂z
(z(t), t, θ)

)T

a(t), a(t1) =
∂L

∂z(t1)
.

Это уравнение интегрируется назад во времени
от t1 к t0.

Градиенты по параметрам модели вычисляются
через интеграл:

∂L

∂θ
= −

∫ t0

t1

aT (t)
∂f

∂θ
(z(t), t, θ)dt.

1.2. Решение уравнения для сопряжённого

состояния

Решим дифференциальное уравнение
da(t)
dt

= −a(t)∂f(z(t),t,θ)
∂z

назад во времени и по-
лучим зависимость от начального состояния
z(t0):

∂L

∂z(t0)
=

∫ t0

t1

a(t)
∂f(z(t), t, θ)

∂z
dt.

Для минимизации функции потерь нужно расчи-
тать её градиент по отношению к z(t0), θ, t0, t1. Для
этого можно считать t и θ частью состояния. Такое
состояние называется аугментированным:

d

dt




z
θ
t



 (t) = faug([z, θ, t]) =




f([z, θ, t])

0
1



 ,

где faug — аугментированная динамика.
Cопряженное состояние к этому аугментирован-

ному состоянию:

aaug =




a
aθ
at



 ,

aθ(t) =
∂L

∂θ(t)
,

at(t) =
∂L

∂t
.

Матрица градиента аугментированной динами-
ки:

∂faug
∂[z, θ, t]

=




∂f
∂z

∂f
∂θ

∂f
∂t

0 0 0
0 0 0


 .

Из уравнения (1) получаем выражение для сопря-
женного аугментированного состояния:

daaug
dt

= −
[
a∂f
∂z

a∂f
∂θ

a∂f
∂t

]
.

Решим это дифференциальное уравнение и полу-
чим:

∂L

∂z(t0)
=

∫ t0

t1

a(t)
∂f(z(t), t, θ)

∂z
dt,

∂L

∂t0
=

∫ t0

t1

a(t)
∂f(z(t), t, θ)

∂t
dt,
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∂L

∂θ
=

∫ t0

t1

a(t)
∂f(z(t), t, θ)

∂θ
dt.

Эти уравнения вместе с уравнением (1) да-
ют градиенты функции потерь по всем входным
параметрам.

2. ВОССТАНОВЛЕНИЕ

ВРЕМЕННО-ЗАВИСИМОГО КВАНТОВОГО

ГАМИЛЬТОНИАНА

Среди актуальных задач квантовой механики —
реконструкция неизвестного временем изменяюще-
гося гамильтониана квантовой системы по экспе-
риментальным данным. Этот гамильтониан опреде-
ляет динамику системы на основе уравнения Шре-
дингера (или уравнения Гейзенберга) с явной вре-
менной зависимостью. Важность задачи обуслов-
лена, например, необходимостью контроля кван-
товых процессоров: временно-зависимый гамильто-
ниан задаёт протоколы квантовых ворот и кван-
товых симуляций. При этом существующие мето-
ды либо не предназначены для непрерывно меня-
ющихся гамильтонианов, либо требуют прерывать
эволюцию системы, что искажает результирующий
гамильтониан [2, 3].

2.1. Современные подходы к задаче

Классические методы квантовой томографии, на-
пример метод Чуанга–Нильсена, восстанавливают
динамику «черного ящика» при стационарном га-
мильтониане с помощью прерывающих измерений
[2]. Эти методы не дают прямой информации о вре-
менной зависимости гамильтониана и зачастую тре-
буют измерений до и после эволюции.

Siva et al. (2023) экспериментально продемон-
стрировали восстановление неизвестного временно-
зависимого (точнее, меняющегося по известному
протоколу) гамильтониана двух сверхпроводящих
кубитов с помощью непрерывных слабых изме-
рений без прерывания эволюции [2, 14]. Авторы
предложили алгоритм, который восстанавливает
H(t) и матрицу плотности системы из неполного
набора непрерывных измерений, показывая высо-
кую точность для однокубитных и двухкубитных
взаимодействий [2].

Han et al. (2021) предложили машинно-обучен-
ный метод для определения структуры неизвест-
ного временно-зависимого гамильтониана кванто-
вой цепочки спинов. Они ввели нейросеть, встра-
ивающую уравнение Гейзенберга в функцию по-
терь (так называемый Heisenberg neural network),
что позволяет из временного ряда локальных из-
мерений «научиться» оператору H(t) [3]. Их под-
ход показал возможность восстанавливать не толь-
ко локальные члены гамильтониана, но и полную
структуру взаимодействий во всей системе, демон-
стрируя высокую точность даже при измерениях
только одного спина [3].

Ряд работ фокусируется на задаче обуче-
ния статического гамильтониана по траекториям
(Hamiltonian Learning), в том числе с использова-
нием нейросетевых моделей [4, 14]. Однако они рас-
сматривают либо закрытые стационарные системы,
либо открытые системы с марковской динамикой,
без явной временной зависимости параметров. Та-
ким образом, общие методы Hamiltonian Learning
пока не учитывают изменения H во времени.

2.2. Научная новизна данного подхода

Метод Neural ODE — нейросеть непрерывной
глубины, обучающаяся по данным о производной
во времени. В квантовой механике он естественно
соответствует построению модели генератора эво-
люции (гамильтониана или супероператора) через
непрерывный ODE. Хотя Neural ODE уже приме-
нялись к квантовым системам (например, к обу-
чению динамики закрытых и открытых систем [5]
и к обучению статических гамильтонианов [4]),
их использование для восстановления временнo-
зависимого гамильтониана остаётся открытой за-
дачей. В частности, в упомянутых работах реша-
лись задачи с неизменным во времени гамильто-
ниана или эволюцией по известному формату, но
не учитывалось обобщённое нелинейное изменение
H(t). Новизна применения Neural ODE заключает-
ся в возможности учесть зависимость от времени
как дополнительный вход нейросети (т.е. сделать
модель неавтономной), обеспечив сквозное обуче-
ние непрерывного процесса. На данный момент
нам не известны публикации, где Neural ODE це-
ленаправленно использовались бы для восстанов-
ления неизвестной временной структуры квантово-
го гамильтониана — что создаёт научную новизну
предлагаемого подхода.

2.3. Преимущества Neural ODE для этой

задачи

Neural ODE непосредственно моделируют непре-
рывную эволюцию квантового состояния или на-
блюдаемых, формально соответствуя уравнениям
Шредингера/Гейзенберга [7]. Это позволяет не вво-
дить искусственную дискретизацию времени (в от-
личие от многослойных сетей) и точно учитывать
время как непрерывный параметр. Метод сопря-
жённых градиентов (adjoint method) обеспечивает
эффективный вычислительный граф для оптими-
зации параметров модели [4].

Neural ODE часто обладают интерпретируе-
мым латентным пространством. В частности, для
QNODE показано, что близкие траектории в скры-
том пространстве соответствуют похожим кванто-
вым динамикам [5]. Это может позволить физиче-
ски интерпретировать параметры латентных пере-
менных как описывающие квантовое состояние. Та-
ким образом, обучение Neural ODE может дать не
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только численное решение, но и интуитивно понят-
ный образ скрытой квантовой динамики.

2.4. Идентифицируемость и ограничение

класса гамильтонианов

Формализуем ограничения на класс искомых га-
мильтонианов и дадим описание того, какие ком-
поненты H(t) могут быть восстановлены по наблю-
даемым траекториям 〈σi〉(t). Для конкретики рас-
смотрим двухуровневую систему с гамильтонианом
вида

H(t) = ax(t)σx + ay(t)σy + az(t)σz + a0(t) I, (2)

где σx,y,z — матрицы Паули, I — единичная матри-
ца; далее положим ~ = 1.

Пусть состояние системы описывается матрицей
плотности

ρ(t) = 1
2

(
I + r(t) · σ

)
,

где r(t) = (rx, ry , rz)
⊤, 〈σi〉(t) = Tr[ρ(t)σi] = ri(t).

Для унитарной (замкнутой) эволюции с гамильто-
нианом (2) без учёта a0(t) уравнение фон Неймана
даёт известное уравнение для r(t):

ṙ(t) = 2 a(t)× r(t), a(t) ≡
(
ax(t), ay(t), az(t)

)⊤
.

(3)
Отметим, что скалярный член a0(t) не влияет на

коммутатор [H, ρ] и, следовательно, на динамику
r(t); поэтому a0(t) принципиально неидентифици-
руем из наблюдений 〈σi〉(t) и в дальнейшем исклю-
чается из рассмотрения (либо фиксируется априор-
но) [6, 7].

Из уравнения (3) можно выразить только ком-
поненту a(t), отвечающую за вращение в направ-
лении, перпендикулярном r(t). Действительно, вы-
полняя векторное умножение справа на r и исполь-
зуя тождество векторного тройного произведения,
получаем

r× ṙ = 2 r× (a × r) = 2
(
‖r‖2a− (r · a)r

)
. (4)

Отсюда следует представление для a(t):

a(t) =
r(t)× ṙ(t)

2‖r(t)‖2
+ α(t) r(t), (5)

где скалярная функция α(t) = (r · a)/‖r‖2 остаётся
неопределённой [6]. Формула (5) показывает клю-
чевой факт: из наблюдений r(t) и их производных
можно однозначно восстановить только компонен-
ту a⊥(t), перпендикулярную r(t); компоненту, па-
раллельную r(t), — нет [2, 3].

Следовательно, добавление к a(t) любого век-
торного поля вида α(t)r(t) не изменяет пра-
вую часть уравнения (3) и потому неразличимо
по данным 〈σi〉(t).

Описанная неединственность может быть устра-
нена, если доступны траектории r

(k)(t), полу-
ченные при различных начальных состояниях

k = 1, . . . ,K. Для каждой траектории справедли-
во тождество, аналогичное (4):

r
(k) × ṙ

(k) = 2
(
‖r(k)‖2a− (r(k) · a)r(k)

)
.

Сложив по k и введя

b ≡

K∑

k=1

r
(k) × ṙ

(k), M ≡ 2

K∑

k=1

(
‖r(k)‖2I − r

(k)
r
(k)⊤

)
,

(6)
получаем линейную систему

M a = b. (7)

Если матрица M невырождена, то в рамках дан-
ной совокупности подготовок a(t) можно однознач-
но восстановить:

a(t) =M(t)−1
b(t). (8)

Практическое условие достаточной информатив-
ности данных формулируется как невырожден-
ность матрицы M(t) для интересующих времён:
это обычно достигается, если набор векторов
{r(k)(t)}Kk=1 содержит по крайней мере два (в об-
щем случае — три) линейно независимые направле-
ния в R3 и их длины не близки к нулю.

2.5. Реализация Neural ODE

Рассмотрим динамику двухуровневой квантовой
системы, описываемой вектором состояния

ψ(t) ∈ C
2, ‖ψ(t)‖2 = 1.

Эволюция системы задаётся уравнением Шрёдин-
гера:

dψ(t)

dt
= −iH(t)ψ(t), (9)

где H(t) — эрмитов гамильтониан, зависящий от
времени (в единицах, где ~ = 1).

Пространство эрмитовых 2×2 матриц образовано
базисом, состоящим из единичной матрицы I и мат-
риц Паули σx, σy, σz . Следовательно, любой гамиль-
тониан можно записать в виде:

H(t) = a0(t)I + ax(t)σx + ay(t)σy + az(t)σz , (10)

где функции aµ(t) определяют динамику системы.
Истинный гамильтониан задаётся аналитически

следующими временными зависимостями:

a0(t) = 0.1 sin(0.5t), ax(t) = cos(1.2t+ 0.2),
(11)

ay(t) = 0.6 sin(0.7t− 0.3), az(t) = 0.8 cos(0.5t+ 1.0).
(12)

Эти функции определяют временную структу-
ру коэффициентов при матрицах Паули в разло-
жении (10). Такой гамильтониан эквивалентен га-
мильтониану спина — 1

2 в переменном магнитном
поле B(t):

H(t) = −γB(t) · S = a(t) · σ,
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Рис. 1. Зависимость истинных и предсказанных средних значений операторов Паули

где S = 1
2σ — оператор спина, а γ — гиро-

магнитное отношение [2, 3]. Таким образом, вы-
бранные временные зависимости aµ(t) моделиру-
ют осциллирующее магнитное поле, действующее
на спин — 1

2 частицу.
Для восстановления неизвестных функций aµ(t)

используется нейронная сеть типа TimeNet, реали-
зующая отображение

t 7→ [a0(t), ax(t), ay(t), az(t)].

Далее гамильтониан H̃(t), построенный по выходу
сети, подставляется в уравнение (9), и проводит-
ся интегрирование с использованием той же схе-
мы RK4.

Прямая минимизация разности между ψ(t) и ψ̃(t)
не имеет смысла из-за глобальной фазовой неопре-
делённости. Поэтому в качестве наблюдаемых ве-
личин используются средние значения операторов
Паули:

〈σi〉(t) = 〈ψ(t)|σi|ψ(t)〉.

Функция потерь определяется как среднеквадра-
тичное отклонение предсказанных и истинных на-
блюдаемых:

L =
1

N

∑

t

∑

i∈{x,y,z}

(〈σi〉true(t)− 〈σi〉pred(t))
2
.

Оптимизация проводится методом Adam с шагом
обучения 3× 10−3.

2.6. Результаты

Был написан код на языке Python (ссыл-
ка на репозиторий GitHub: https://github.com/

naumovas22-droid/Neural-ODE), который реализу-
ет нейронное обыкновенное дифференциальное
уравнение с использованием библиотеки PyTorch.

Результаты работы данного кода представлены
на рис. 1–4.

ЗАКЛЮЧЕНИЕ

В данной работе был предложен новый метод
восстановления временно-зависимого гамильтониа-
на двухуровневой квантовой системы на основе ней-
ронной сети в схеме Neural ODE. Научная новизна
подхода состоит в том, что, в отличие от извест-
ных методов, он непосредственно моделирует непре-
рывную эволюцию квантовой системы без прерыва-
ния эволюции. Нейросеть выдает временные зави-
симости коэффициентов гамильтониана, после чего
интегратор уравнения Шреденгера получает пред-
сказанную траекторию. Предложенный метод пока-
зал высокую точность восстановления функции га-
мильтониана в экспериментальных численных при-
мерах, обеспечивая надёжное совпадение предска-
занных и истинных траекторий кубита. Преимуще-
ство Neural ODE-схемы заключается в естествен-
ной работе с непрерывным временем: не требуется
искусственно дискретизировать эволюцию и метод
сопряжённых переменных обеспечивает эффектив-
ное вычисление градиентов при обучении.

Перспективные направления дальнейших иссле-
дований включают применение разработанного
подхода для калибровки квантовых симуляторов,
адаптивной томографии и разработки схем кванто-
вого контроля. Например, методы гибридного кван-
тово-классического обучения гамильтониана рас-
сматриваются как инструмент сертификации кван-
товых устройств и симуляторов [8]. Непрерывные
методы мониторинга эволюции могут быть интегри-
рованы с адаптивной стратегией измерений для бо-
лее эффективной томографии динамики. Уже се-
годня отмечается широкая актуальность машинно-
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Рис. 4. Зависимость среднеквадратичной ошибки вос-
становления коэффициентов гамильтониана от количе-
ства эпох

го обучения динамики в задачах квантового управ-
ления и симуляции [5]. В будущем комбинация
Neural ODE с квантовыми вычислениями (напри-
мер, квантовыми дифференцируемыми симулято-

рами) открывает перспективы гибридных алгорит-
мов, где квантовая и классическая части будут сов-
местно обучаться восстановлению динамики [15].
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The problem of reconstructing an unknown time-dependent Hamiltonian of a two-level quantum system from
its observed dynamics is considered. A method based on a neural network in the Neural ODE framework is
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