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Подробно изложен метод нахождения матричных элементов гамильтониана системы из трех
частиц на многомерном гауссовом базисе для использования в задачах ядерной и атомной фи-
зики, а также ядерной астрофизики. Рассмотрены как центральные, так и нецентральные
(спин-орбитальные и тензорные) взаимодействия между частицам. Показано, что разработан-
ная методика позволяет свести вычисление матричных элементов к относительно простым
аналитическим формулам, призванным обеспечить высокую точность численного расчета соб-
ственных значений гамильтониана.
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ВВЕДЕНИЕ

Знание сечений и скоростей реакций с легкими
ядрами [1–3] играет определяющую роль в реше-
нии ряда фундаментальных задач физики и астро-
физики, например в разработке истинной картины
ядерного превращения вещества в горячих астро-
физических объектах, таких как ранняя Вселенная
[4, 5] или недра звезд [6, 7]. Использование надеж-
ных волновых функций легких ядер в расчетах се-
чений астрофизических реакций является необхо-
димым условием для понимания механизмов ядер-
ных процессов, контролирующих синтез элементов
в таких средах. Известно, что многие легкие ядра
могут быть описаны в рамках модели систем из 3
(или 4) частиц и поэтому неудивительно, что мето-
ды решения малочастичного уравнения Шрединге-
ра составляют важный раздел физики квантовых
систем. Особую роль здесь играют подходы с ис-
пользованием вариационных процедур.

Одним из таких подходов является предложен-
ный в [8, 9] вариационный метод, основанный на
разложении волновой функции системы в ряд по
неминимальному неортогональному гауссовому ба-
зису. Это разложение является конечномерным ана-
логом генераторного преобразования (интегрально-
го преобразования Гаусса–Лапласа) функции двух
переменных, а сам базис представляет собой мас-
штабное расширение многомерного осцилляторно-
го базиса. Он является полным в том смысле, что
широкий класс квадратично интегрируемых функ-
ций может быть разложен по такому базису [10, 11].
В работах [12–14], относящихся к атомной и моле-
кулярной физике, были изучены свойства гауссова
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базиса и доказаны теоремы о его полноте. Благо-
даря большому количеству вариационных парамет-
ров (особенно нелинейных), данный базис является
очень гибким и позволяет описать много типов кор-
реляций, в частности короткодействующие и кла-
стерные. Подобный вариационный подход был ис-
пользован в НИИЯФ МГУ для выполнения большо-
го цикла работ по изучению структуры и свойств
ядер с A = 6, 9 в рамках трехчастичных моделей,
а также для описания 3N -систем (см., например,
[15–21]).

Практическое удобство работы с гауссовым ба-
зисом заключается в возможности развития эф-
фективных и относительно простых методик для
расчета матричных элементов (МЭ) трехчастич-
ного гамильтониана. Немаловажным обстоятель-
ством здесь является то, что эти МЭ удается полу-
чить в аналитическом виде, удобном для последую-
щих численных вычислений. Подробное изложение
такой методики и является основной целью данной
работы.

1. БАЗИСНЫЕ ФУНКЦИИ

Рассмотрим систему из трех частиц (1 + 2 + 3)
с массами m1, m2, m3 и лабораторными координа-
тами r1, r2, r3. Выделяя движение общего центра
масс, будем описывать систему с помощью норми-
рованных координат Якоби (см. рисунок)

xi = τ−1
jk (rj − rk) = τ−1

jk rjk, (1)

yi = τ−1
jki

(

mjrj +mkrk

mj +mk
− ri

)

= τ−1
jkiρρρρ(jk)i. (2)
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Рисунок. Наборы координат Якоби в трехчастичной си-
стеме

Здесь

τ−1
jk =

{

2mjmk

~2(mj +mk)

}1/2

,

τ−1
jki =

{

2mi(mj +mk)

~2(mi +mj +mk)

}1/2

,

(3)

а индексы (ijk) равны (123) или их циклической
перестановке. Вектор xi направлен по прямой, со-
единяющей частицы j и k, а вектор yi описывает
движение частицы i относительно центра масс па-
ры (jk). Различные наборы координат Якоби

X̂l =

(

xl

yl

)

, (l = i, j, k) (4)

связаны друг с другом линейным преобразованием
X̂i = (ij)X̂j , где матрица преобразования равна

(ij) =

(

−ξij −vij
vij −ξij

)

, (5)

ξij = ξji =

[

mimj

(mi +mk)(mj +mk)

]1/2

, (6)

vij = −vji =

[

mk(mi +mj +mk)

(mi +mk)(mj +mk)

]1/2

. (7)

Данные формулы понимаются в смысле цикличе-
ской перестановки (ijk). Якобиан такого преобра-

зования J(X̂i → X̂j) = ξ2i + v2i = 1.
Волновую функцию системы с полным угловым

моментом J и проекцией MJ разложим в ряд

ΨJMJ (x1,y1; ξξξξ) =

=
∑

LS

∑

λlS23

Φλl(x1, y1)F
JMJ

λlS23LS(x̂1, ŷ1; ξξξξ), (8)

где L и S — полные орбитальный и спиновый мо-
менты, а угловые моменты λ и l (удовлетворяющие

равенству λλλλ + l = L) сопряжены координатам x1
и y1 соответственно. Набор ξξξξ = {ξξξξk} (k = 1, 2, 3)
дает совокупность внутренних координат k-го кла-
стера. Спин-угловая функция F

JMJ

λlS23LS разделяется

на угловую Y
LML

λl и спиновую χSMS

S23
части

F
JMJ

λlS23LS(x̂1, ŷ1; ξξξξ) =

=
∑

MLMS

〈LMLSMS |JMJ〉YLML

λl (x̂1, ŷ1)XSMS

S23
(ξξξξ),

(9)

где Y
LML

λl является тензором обычного типа

Y
LML

λl (x̂1, ŷ1) =
∑

mµ

〈λµlm|LML〉Yλµ(x̂1)Ylm(ŷ1),

(10)

a спинор XSMS

S23
конкретизируется в соответствии со

спиновым составом системы.
Радиальная часть Φλl в (8) разлагается в ряд по

многомерным гауссовым функциям

Φλl(x1, y1) =

N
∑

j=1

CλljNjx
λ
1y

l
1 exp{−αλjx

2
1 − βljy

2
1},

(11)
где нормировочный коэффициент Nj равен

Nj = 2λ+l+3

(

2α
λ+3/2
λj β

l+3/2
lj

π[λ]!![l]!!

)1/2

. (12)

Здесь (и ниже в данной работе) введено обозначе-
ние [k] ≡ (2k + 1). Базисные функции ϕγ̃j(x1,y1; ξξξξ)
(γ̃ ≡ γ, L, S23, S, J,MJ ; γ ≡ λ, l), образующие базис
нашего подпространства, определяются равенством

ϕγ̃j(x1,y1; ξξξξ) =

= Njx
λ
1y

l
1 exp{−αλjx

2
1 − βljy

2
1}FJMJ

γS23LS(x̂1, ŷ1; ξξξξ).

(13)

Эти функции удовлетворяют условию ортонорми-
рованности

〈ϕγ̃′i|ϕγ̃j〉 = Iγ
′γ

ij δγ̃′γ̃ , (14)

где интеграл перекрывания Iγ
′γ

ij (γ̃′ ≡
≡ γ′, L′, S′

23, S
′, J,MJ ; γ′ ≡ λ′, l′) равен

I γ̃
′γ̃

ij = 2λ+l+3 Pij(λ, λ, l, l)

Aλλ
ij (3)Bll

ij(3)
. (15)

В этом выражении

Pij(λ
′, λ, l′, l) = α

2λ′+3

4

λ′i α
2λ+3

4

λj β
2l′+3

4

l′i β
2l+3

4

lj , (16)

Aλ′λ
ij (t) =

(

αλ′λ
ij

)

λ′+λ+t
2

, Bl′l
ij (t) =

(

βl′l
ij

)

l′+l+t
2

,

(17)
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αλ′λ
ij = αλ′i + αλj , βl′l

ij = βl′i + βlj . (18)

Функция ϕγ̃j(x1,y1; ξξξξ) допускает алгебраиче-
скую перевязку от исходного набора 1 к друго-
му набору q = 2, 3 координат Якоби в соот-
ветствии с формулами для преобразования гаус-
соиды exp{−αλjx

2
1 − βljy

2
1} и шаровой функции

xλ
1y

l
1Y

LML

λl (x̂1, ŷ1).

Поскольку координаты частиц в разных наборах
связаны соотношением

x1 = (1q)11xq + (1q)12yq,

y1 = (1q)21xq + (1q)22yq,
(19)

получаем

exp{−αλjx
2
1 − βljy

2
1} =

= exp{−µγ
qjx

2
q − νγqjy

2
q − ργqj(xqyq)}, (20)

µγ
qj = αλj(1q)

2
11 + βlj(1q)

2
21,

νγqj = αλj(1q)
2
12 + βlj(1q)

2
22,

(21)

ργqj = 2[αλj(1q)11(1q)12 + βlj(1q)21(1q)22]. (22)

Для преобразования шаровой функции
xλ
1y

l
1Y

LML

λl (x̂1, ŷ1) воспользуемся равенством

|r1 + r2|lYlm(r̂1 + r2) =
∑

l1+l2=l

rl11 rl22

[

4π[l]![l]

[l1]![l2]!

]1/2

×
∑

m1m2

(−1)l+mYl1m1
(r̂1)Yl2m2

(r̂2)

(

l1 l2 l
m1 m2 −m

)

. (23)

Пусть матрица R осуществляет преобразование X̂1 = RX̂R. Используя (10) и (23), имеем

xλ
1y

l
1Y

LML

λl (x̂1, ŷ1) =
∑

mµ

∑

λ1+λ2=λ

∑

l1+l2=l

∑

µ1µ2

∑

m1m2

xλ1+l1
R yλ2+l2

R Rλ1

11R
λ2

12R
l1
21R

l2
22×

× 4π

(

[λ]![l]![λ][l][L]

[λ1]![λ2]![l1]![l2]!

)1/2(
λ l L
µ m −ML

)(

λ1 λ2 λ
µ1 µ2 −µ

)(

l1 l2 l
m1 m2 −m

)

×

× Yλ1µ1
(x̂R)Yl1m1

(x̂R)Yλ2µ2
(ŷR)Yl2m2

(ŷR). (24)

Поскольку для сферических функций справедливо равенство

Yj1m1
(Ω)Yj2m2

(Ω) =
∑

jm

(−1)m
(

[j1][j2][j]

4π

)1/2 (
j1 j2 j
0 0 0

) (

j1 j2 j
m1 m2 m

)

Yj−m(Ω), (25)

выражение (24) принимает вид

xλ
1y

l
1Y

LML

λl (x̂1, ŷ1) =
∑

λ1+λ2=λ

∑

l1+l2=l

∑

j1j2

∑

LML

xλ1+l1
R yλ2+l2

R ALLλ1l1R
λlj1j2

Y
LML

j1j2
(x̂R, ŷR). (26)

Здесь

ALLλ1l1R
λlj1j2

= (−1)j1−j2Rλ1

11R
λ2

12R
l1
21R

l2
22

(

λ1 l1 j1
0 0 0

)(

λ2 l2 j2
0 0 0

)

Kλ1l1
λlj1j2

A(Ω), (27)

Kλ1l1
λlj1j2

=

(

[λ]![l]![λ][l][λ1][l1][λ2][l2][j1][j2]

[λ1]![l1]![λ2]![l2]!

)1/2

, (28)

A(Ω) = ([L][L])1/2
∑

µ1µ2µm1m2mM1M2

(−1)ML−M1−M2

(

λ l L
µ m −ML

)(

λ1 λ2 λ
µ1 µ2 −µ

)(

l1 l2 l
m1 m2 −m

)

×

×
(

λ1 l1 j1
µ1 m1 −M1

)(

λ2 l2 j2
µ2 m2 −M2

)(

j1 j2 L

M1 M2 −ML

)

. (29)

Свертывая 3j-символы в 9j-символы Вигнера [22] и используя свойство ортогональности, получаем

A(Ω) = (−1)λ+l+j1+j2







λ1 λ2 λ
l1 l2 l
j1 j2 L







δLLδMLML
. (30)
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Собирая выражения (26)-(30) вместе и обозначая L1 ≡ λ1, L2 ≡ l2, приходим к следующей формуле для
преобразования шаровой функции:

xλ
1y

l
1Y

LML

λl (x̂1, ŷ1) =
λ
∑

L1=0

l
∑

L2=0

∑

j1j2

xL1+L2

R y
λ+l−(L1+L2)
R ALL1L2R

λlj1j2
Y

LML

j1j2
(x̂R, ŷR), (31)

ALL1L2R
λlj1j2

= (−1)λ+lRL1

11R
λ−L1

12 RL2

21R
l−L2

22 KL1L2

λlj1j2

(

L1 L2 j1
0 0 0

)(

λ− L1 l− L2 j2
0 0 0

)







L1 λ− L1 λ
L2 l − L2 l
j1 j2 L







, (32)

KL1L2

λlj1j2
=

(

[λ]![l]![λ][l][L1][L2][λ− L1][l − L2][j1][j2]

[L1]![L2]![λ− L1]![l − L2]!

)1/2

. (33)

Выражение (32) можно свести к более удобному для численных расчетов виду

ALL1L2R
λlj1j2

= RL1L2

λl

(

[λ][l]{λlL}
{L1L2j1}{(λ− L1)(l − L2)j2}[L]

)1/2

〈L10L20|j10〉×

× 〈(λ− L1)0(l − L2)0|j20〉 〈j1(L1 − L2)j2(λ− L1 − l + L2)|L(λ− l)〉, (34)

{l1l2l3} = (l1 + l2 + l3 + 1)!(l1 + l2 − l3)! (35)

RL1L2

λl = RL1

11R
λ−L1

12 RL2

21R
l−L2

22 . (36)

Таким образом, базисная функция ϕγ̃j(x1,y1; ξξξξ) допускает алгебраическую перевязку к другому набору
координат Якоби в соответствии с формулами (20) и (31).

2. МАТРИЧНЫЕ ЭЛЕМЕНТЫ

ГАМИЛЬТОНИАНА

2.1. Кинетическая энергия

Рассмотрим, какой вид приобретает оператор ки-
нетической энергии системы в координатах Якоби.
Произведем переход от лабораторных координат
(r1, r2, r3) к координатам (R, rjk, ρρρρ(jk)i), где вектор

R = (m1r1 +m2r2 +m3r3)/(m1 +m2 +m3) дает по-
ложение центра масс системы. Тогда оператор ки-
нетической энергии H0

H0 = −
3
∑

i=1

~2

2mi

(

∂

∂ri

)2

(37)

преобразуется к виду

H0 = − ~2

2M

(

∂

∂R

)2

− ~2

2µjk

(

∂

∂rjk

)2

−

− ~2

2µ(jk)i

(

∂

∂ρρρρ(jk)i

)2

, (38)

где M = m1+m2+m3, а µjk и µ(jk)i — приведенные
массы пар (jk) и (i(jk)) соответственно. Выделяя
движение центра масс и учитывая (2), получаем

H0 = −
(

∂

∂xi

)2

−
(

∂

∂yi

)2

≡ H0(xi) +H0(yi),

i = 1, 2, 3.
(39)

В сферической системе координат оператор H0 для
i = 1 приобретает вид

H0(x1) = − 1

x2
1

∂

∂x1

(

x2
1

∂

∂x1

)

+
λλλλ2

x2
1

, (40)

H0(y1) = − 1

y21

∂

∂y1

(

y21
∂

∂y1

)

+
l2

y21
. (41)

Найдем теперь действие оператора H0(x1)
на базисную функцию (13). Учитывая, что

λλλλ2|FJMJ

γS23LS〉 = λ(λ + 1)FJMJ

γS23LS , получаем

H0(x1)|ϕγ̃j〉 = 2αλjNjy
l
1 exp{−αλjx

2
1 − βljy

2
1}×

×
[

(2λ+ 3)xλ
1 − 2αλjx

λ+2
1

]

F
JMJ

γS23LS (42)

или

H0(x1)|ϕγ̃j〉 = 2αλj(2λ+ 3− 2αλjx
2
1)ϕγ̃j . (43)

Аналогично

H0(y1)|ϕγ̃j〉 = 2βlj(2l + 3− 2βljy
2
1)ϕγ̃j . (44)
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Следовательно, действие H0 на базисную функцию ϕγ̃j имеет вид

H0|ϕγ̃j〉 = 2
[

(2λ+ 3)αλj + (2l + 3)βlj − 2(α2
λjx

2
1 + β2

ljy
2
1)
]

ϕγ̃j (45)

и, соответственно, МЭ для оператора кинетической энергии равен

H γ̃′γ̃
0ij = 〈ϕγ̃′i|H0|ϕγ̃j〉 = 2 [(2λ+ 3)αλj + (2l+ 3)βlj ] 〈ϕγ̃′i|ϕγ̃j〉 − 4〈ϕγ̃′i|(α2

λjx
2
1 + β2

ljy
2
1)ϕγ̃j〉. (46)

Используя формулу для интеграла перекрывания базисных функций 〈ϕγ̃′i|ϕγ̃j〉 (14) и вычисляя второе
слагаемое в выражении (46), получаем

H γ̃′γ̃
0ij = 2λ+l+4 Pij(λ, λ, l, l)

Aλλ
ij (5)Bll

ij(5)
[(2λ+ 3)αλiαλjβlij + (2l + 3)βliβljαλij ] δγ̃′γ̃ , (47)

где αλij = αλλ
ij и βlij = βll

ij , а остальные обозначения приведены в (16)–(18).

2.2. Центральные силы

В координатах Якоби центральные потенциалы парных взаимодействий частиц равны

Vcentral = V1(τ23x1) + V2(τ31x2) + V3(τ12x3). (48)

Рассмотрим потенциалы с четно-нечетным расщеплением взаимодействия вида

Vq(r) = V (1)
q (r) + PM (r)V (2)

q (r), (49)

где PM (r) — оператор Майорана и q=1, 2, 3. Начнем с расчета МЭ для потенциала взаимодействия частиц
2 и 3 (см. рис. 1). Учитывая, что

PM |FJMJ

γS23LS〉 = (−1)λFJMJ

γS23LS , (50)

получаем следующее выражение для МЭ V γ̃′γ̃
qij при q = 1:

V γ̃′γ̃
1ij = 〈ϕγ̃′i|V1(τ23x1|ϕγ̃j〉 = 22λ+l+5 Pij(λ, λ, l, l)√

π[λ]!!Bll
ij(3)

[

V
(1)[2λ+2]
1 (αλij) + (−1)λV

(2)[2λ+2]
1 (αλij)

]

δγ̃′γ̃ , (51)

где момент потенциала V
[n]
1

V [n](t) =

∫ ∞

0

xnV (r)e−tx2

dx. (52)

МЭ для потенциалов взаимодействий частиц 1 и 3 (q=2), 1 и 2 (q=3) равен

V γ̃′γ̃
qij = 〈ϕγ̃′i|V (1)

q (τ1pxq)|ϕγ̃j〉+ 〈ϕγ̃′i|PMV (2)
q (τ1pxq)|ϕγ̃j〉 (pq) = (32), (23). (53)

Рассмотрим первое слагаемое в (53). Снимая интегрирование по внутренним координатам кластеров и учи-
тывая ортонормированность спиновых функций, получаем

V
(1)γ̃′γ̃
qij = 〈ϕγ̃′i|V (1)

q (τ1pxq)|ϕγ̃j〉 = δS′

23
S23

δS′SNiNj

∑

MLMS

〈L′MLSMS|JMJ〉〈LMLSMS |JMJ〉 I(V (1)
q ), (54)

где интеграл I(V
(1)
q ) равен

I(V (1)
q ) =

∫

{

xλ′

1 yl
′

1Y
L′M∗

L

γ′ (x̂1, ŷ1)
}

exp(−αλ′ix
2
1 − βl′iy

2
1)V

(1)
q (τ1pxq)×

×
{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}

exp(−αλjx
2
1 − βljy

2
1) dx1 dy1. (55)

Произведем замену переменных (x1,y1) → (xq,yq), соответствующую перевязке базисной функции на

набор координат Якоби X̂q. Тогда, в соответствии с выражениями (20)–(22), формула (55) принимает вид

I(V (1)
q ) =

∫

exp(−µγ′γ
qij x

2
q − νγ

′γ
qij y

2
q − ργ

′γ
qij (xqyq))

{

xλ′

1 yl
′

1 Y
L′M∗

L

γ′ (x̂1, ŷ1)
}(xqyq)

(1q)
×

× V (1)
q (τ1pxq)

{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}(xqyq)

(1q)
dxq dyq, (56)
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µγ′γ
qij = µγ′

qi + µγ
qj , νγ

′γ
qij = νγ

′

qi + νγqj , ργ
′γ

qij = ργ
′

qi + ργqj . (57)

Индексы при фигурных скобках указывают на перевязку шаровой функции к новому набору координат

Якоби матрицей (1q). Для расчета I(V
(1)
q ) произведем диагонализацию квадратичной формы в показателе

экспоненты −µγ′γ
qij x

2
q − νγ

′γ
qij y

2
q − ργ

′γ
qij (xqyq). С этой целью совершим замену переменных (xq,yq) → (xq,y)

матрицей преобразования P

P =

(

1 0

aγ
′γ

qij 1

)

, aγ
′γ

qij = −ργ
′γ

qij /2ν
γ′γ
qij , detP = 1. (58)

Тогда квадратичная форма сводится к виду

− µγ′γ
qij x

2
q − νγ

′γ
qij y

2
q − ργ

′γ
qij (xqyq) = −ωγ′γ

qij x
2
q − νγ

′γ
qij y

2, (59)

ωγ′γ
qij = µγ′γ

qij −
(

ργ
′γ

qij

)2

/4νγ
′γ

qij , (60)

а интеграл I(V
(1)
q ) становится равным

I(V (1)
q ) =

∫

exp(−ωγ′γ
qij x

2
q − νγ

′γ
qij y

2)
{

xλ′

1 yl
′

1 Y
L′M∗

L

γ′ (x̂1, ŷ1)
}(xqy)

(1q)P
×

× V (1)
q (τ1pxq)

{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}(xqy)

(1q)P
dxq dy. (61)

Здесь шаровые функции преобразованы матрицей поворота Q = (1q)P с элементами

Q =

(

−ξ1q−v1qa
γ′γ
qij −v1q

v1q−ξ1qa
γ′γ
qij −ξ1q

)

, detQ = 1. (62)

Расписав перевязку шаровых функций на основе преобразования (31), получаем

I(V (1)
q ) =

λ
∑

L1=0

l
∑

L2=0

λ′

∑

L3=0

l′
∑

L4=0

∑

j1j2j3j4

AL′L3L4Q
γ′j3j4

ALL1L2Q
γj1j2

×

×
∫ ∞

0

xL1+L2+L3+L4+2
q V (1)

q (τ1pxq) exp(−ωγ′γ
qij x

2
q) dxq

∫ ∞

0

yλ
′+l′+λ+l−(L1+L2+L3+L4)+2 exp(−νγ

′γ
qij y

2) dy×

×
∫

Y
L′M∗

L

j3j4
(x̂q , ŷ)Y

LML

j1j2
(x̂q , ŷ) dx̂q ŷ. (63)

Учитывая свойство ортонормированности сферических функций и коэффициентов Клебша–Гордана, при-
ходим к следующему окончательному результату:

V
(1)γ̃′γ̃
qij =

Pij(λ
′, λ, l′, l)

(πE)1/2

∑

L1L2L3L4j1j2

2
n+m

2
+5(m− n+ 1)!!

(

νγ
′γ

qij

)
n−m−3

2 ×

×AL′L3L4Q
γ′j1j2

ALL1L2Q
γj1j2

V (1)[n+2]
q (ωγ′γ

qij ) δS′

23
S23

δS′SδL′L, (64)

где n = L1 + L2 + L3 + L4, m = λ′ + λ+ l′ + l и E = [λ′]!![λ]!![l′]!![l]!!
Расчет второго слагаемого в (53) проводится по описанной выше схеме. После перевязки базисных функ-

ций на набор координат X̂q интеграл I(PMV
(2)
q ) по полной аналогии с I(V

(1)
q ) приобретает вид

I(PMV (2)
q ) =

∫

exp(−µγ′γ
qij x

2
q − νγ

′γ
qij y

2
q − ργ

′

qi(xqyq))
{

xλ′

1 yl
′

1 Y
L′M∗

L

γ′ (x̂1, ŷ1)
}(xqyq)

(1q)
×

× V (2)
q (τ1pxq)PM (xq)

[

exp(−ργqj(xqyq))
{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}(xqyq)

(1q)

]

dxq dyq. (65)

2610201–6



ВМУ. Серия 3. ФИЗИКА. АСТРОНОМИЯ. 81(1), 2610201 (2026)

Учитывая, что действие оператора PM (r) на некоторую функцию f(r) сводится к замене аргумента r → −r,
PMf(r) = f(−r), имеем

PM (xq)

[

exp(−ργqj(xqyq))
{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}(xqyq)

(1q)

]

=

=

[

exp(ργqj(xqyq))
{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}(−xqyq)

(1q)

]

=

=

[

exp(ργqj(xqyq))
{

xλ
1y

l
1Y

LML
γ (x̂1, ŷ1)

}(xqyq)

(1q)M

]

, (66)

где матрица M преобразования координат Якоби (−xq,yq) → (xq,yq) равна

M =

(

−1 0
0 1

)

. (67)

Используя выражения (66) и (64), получаем

(

PMV
(2)
qij

)γ̃′γ̃

=
Pij(λ

′, λ, l′, l)

(πE)1/2

∑

L1L2L3L4j1j2

2
n+m

2
+5(m− n+ 1)!!

(

νγ
′γ

qij

)

n−m−3

2 ×

×AL′L3L4Q̂
γ′j1j2

ALL1L2Q̂M

γj1j2
V (2)[n+2]
q (ω̂γ′γ

qij ) δS′

23
S23

δS′SδL′L, (68)

где введены обозначения

Q̂ = (1q)P̂ , P̂ =

(

1 0

âγ
′γ

qij 1

)

, Q̂ =

(

−ξ1q−v1q â
γ′γ
qij −v1q

v1q−ξ1q â
γ′γ
qij −ξ1q

)

, (69)

Q̂M = (1q)MP̂ =

(

ξ1q−v1q â
γ′γ
qij −v1q

−v1q−ξ1q â
γ′γ
qij −ξ1q

)

, (70)

âγ
′γ

qij = −ρ̂γ
′γ

qij /2ν
γ′γ
qij , ω̂γ′γ

qij = µγ′γ
qij −

(

ρ̂γ
′γ

qij

)2

/4νγ
′γ

qij , ρ̂γ
′γ

qij = ργ
′

qi − ργqj . (71)

Поэтому для МЭ потенциала V γ̃′γ̃
qij (53) с q=2, 3 окончательно имеем

V γ̃′γ̃
qij =

Pij(λ
′, λ, l′, l)

(πE)1/2

∑

L1L2L3L4j1j2

2
n+m

2
+5(m− n+ 1)!!

(

νγ
′γ

qij

)
n−m−3

2 ×

×
[

AL′L3L4Q
γ′j1j2

ALL1L2Q
γj1j2

V (1)[n+2]
q (ωγ′γ

qij ) +AL′L3L4Q̂
γ′j1j2

ALL1L2Q̂M

γj1j2
V (2)[n+2]
q (ω̂γ′γ

qij )
]

×
× δS′

23
S23

δS′SδL′L. (72)

2.3. Спин-орбитальные и тензорные силы

МЭ потенциалов нецентральных взаимодействий рассмотрим для как смешанной бозон-фермионной
системы, так и системы, состоящей из трех фермионов.

2.3.1. Система из одного бозона и двух фермионов (1B2F) со спинами s1 = 0, s2 = s3 = 1/2.

В такой системе возможны спин-орбитальные взаимодействия между любыми парами частиц. Рассмот-
рим сначала подсистему фермионов (2,3). Здесь потенциал спин-орбитальных сил с четно-нечетным рас-
щеплением взаимодействия имеет вид

slV1(r;S23λλλλ) = (S23λλλλ)
[

slV
(1)
1 (r) + PM (r) slV

(2)
1 (r)

]

, (73)
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где S23 — оператор спина пары частиц (2,3) и, соответственно, полный спин S = S23. МЭ спин-орбитальных
сил (73) с учетом действия (50) факторизуется на спин-угловую и радиальную части

slV γ̃′γ̃
1ij = 〈ϕγ̃′i|slV1(τ23x1;Sλλλλ)|ϕγ̃j〉 = NiNj〈FJMJ

γ′S′

23
L′S′ |Sλλλλ|FJMJ

γS23LS〉
∫ ∞

0

xλ′+λ
1 yl

′+l
1 exp(−αλ′λ

ij x2
1 − βl′l

ij y
2
1)×

×
[

slV
(1)
1 (τ23x1) + (−1)λ slV

(2)
1 (τ23x1)

]

x2
1y

2
1 dx1 dy1. (74)

Учитывая структуру спин-угловой функции (9)–(10), запишем F
JMJ

γS23LS в виде

F
JMJ

γS23LS = |(λl)L, S; JMJ〉 (75)

и преобразуем ее, выделяя полный угловой момент ~J = λλλλ + S пары (2,3)

|(λl)L, S; JMJ〉 =
λ+S
∑

J=|λ−S|

|l, (λS)J; JMJ〉(−1)L+S+J
√

[L][J]

{

l λ L
S J J

}

, (76)

где

|l, (λS)J; JMJ〉 =
∑

mmJ

〈lmJmJ|JMJ〉Ylm(ŷ1)Y
JmJ

λS (x̂1; ξξξξ2, ξξξξ3)χ
B
1 (ξξξξ1). (77)

Здесь Y
JmJ

λS — спин-угловая функция пары фермионов (2,3), а χB
1 — внутренняя волновая функция бозона 1.

Функция Y
JmJ

λS является собственной функцией оператора (Sλλλλ):

Sλλλλ|YJmJ

λS 〉 = 1

2
(J(J+ 1)− λ(λ + 1)− S(S + 1))Y

JmJ

λS . (78)

Учитывая (75)–(78), для угловой части МЭ (74) получаем

〈FJMJ

γ′S′

23
L′S′

|Sλλλλ|FJMJ

γS23LS〉 = (−1)L
′+L

√

[L′][L]

2
×

×
λ+S
∑

J=|λ−S|

[J](J(J + 1)− λ(λ+ 1)− S(S + 1))

{

l λ L′

S J J

}{

l λ L
S J J

}

δγ′γδS′S . (79)

После вычисления радиального интеграла в (74) МЭ slV γ̃′γ̃
1ij сводится к виду

slV γ̃′γ̃
1ij = IslR IslΩ δγ′γδS′S , (80)

где

IslR = (−1)L
′+L 22λ+l+4 Pij(λ, λ, l, l)

Bll
ij(3)[λ]!!

(

[L′][L]

π

)1/2
[

slV
(1)[2λ+2]
1 (αλij) + (−1)λ slV

(2)[2λ+2]
1 (αλij)

]

, (81)

IslΩ =
λ+S
∑

J=|λ−S|

[J](J(J+ 1)− λ(λ+ 1)− S(S + 1))

{

l λ L′

S J J

}{

l λ L
S J J

}

. (82)

Обратимся теперь к тензорным взаимодействиям. Оператор тензорных сил в подсистеме из двух фер-
мионов со спинами 1/2 имеет вид

tVq(r;Skp) =
t V(r)Ŝkp, (83)

где тензорный оператор Ŝkp равен

Ŝkp =
3(σσσσkr)(σσσσpr)

r2
− (σσσσkσσσσp) = 2

(

3
(Skpr)

2

r2
− S2

kp

)

. (84)

Здесь Skp — оператор спина пары частиц (k, p) и σσσσ — матрица Паули.
Рассмотрим МЭ тензорных сил в паре (2,3) (q = 1; k, p = 2, 3). Выделяя спин-угловую и радиальную

части, запишем
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tV γ̃′γ̃
1ij = 〈ϕγ̃′i|tV1(τ23x1;S))))|ϕγ̃j〉 =

= NiNj〈FJMJ

γ′S′

23
L′S′ |Ŝ23|FJMJ

γS23LS〉
∫ ∞

0

xλ′+λ
1 yl

′+l
1 exp(−αλ′λ

ij x2
1 − βl′l

ij y
2
1)×

× tV1(τ23x1)x
2
1y

2
1 dx1 dy1. (85)

Использование равенства (76) дает

〈FJMJ

γ′S′

23
L′S′ |Ŝ23|FJMJ

γS23LS〉 = (−1)L
′+S′+L+S

√

[L′][L]

λ′+S′

∑

J′=|λ′−S′|

λ+S
∑

J=|λ−S|

√

[J′][J]

{

l′ λ′ L′

S′ J J′

}{

l λ L
S J J

}

×

× 〈l′, (λ′S′)J′; JMJ |Ŝ23|l, (λS)J; JMJ〉. (86)

Действуя оператором Ŝ23 на спин-угловую функцию Y
JmJ

λS пары (2,3), находим

〈l′, (λ′S′)J′; JMJ |Ŝ23|l, (λS)J; JMJ〉 = T J

λ′λ δl′l δJ′J δS′S δ1S , (87)

где значения T J

λ′λ для разных комбинаций орбитальных моментов равны

T J

λ′λ =



























2, если λ = J; λ′ = λ;

−2(J+ 2)/[J], если λ = J+ 1; λ′ = λ;

−2(J− 1)/[J], если λ = J− 1; λ′ = λ;

6
√

J(J+ 1)/[J], если λ = J± 1; λ′ = λ∓ 2;

0, во всех остальных случаях.

(88)

После вычисления радиальной части (85) приходим к окончательному виду tV γ̃′γ̃
1ij :

tV γ̃′γ̃
1ij = ItRI

t
Ω δl′l δS′S δ1S , (89)

где

ItR = (−1)L
′+L 2λ

′+λ+l+S Pij(λ
′, λ, l, l)

Bll
ij(3)

√

[L′][L]

π[λ′]!![λ]!!
tV

[λ′+λ+2]
1 (αλ′λ

ij ), (90)

ItΩ =

λ+S
∑

J=|λ−S|

[J]

{

l λ′ L′

S J J

}{

l λ L
S J J

}

T J

λ′λ. (91)

2.3.2. Система из трех фермионов (3F) со спинами s1 = s2 = s3 = 1/2.

Здесь возможны как спин-орбитальные, так и тензорные взаимодействия между любыми парами ча-
стиц. Поскольку 3F- и 1B2F-системы отличаются спиновым состоянием одной частицы, метод расчета МЭ
соответствующих сил в парных подсистемах одинаков, а сами МЭ имеют сходный вид.

Так, вычисление МЭ спин-орбитальных (73) и тензорных (83) сил в подсистемах (2,3) отличается от
рассмотренных выше случаев лишь преобразованием спин-угловой функции (76). Наличие спинов у всех
трех частиц приводит к необходимости перевязки не только орбитальных моментов, но и спинов

|(λl)L, S; JMJ〉 =

l+S1
∑

J1=|l−S1|

λ+S23
∑

J=|λ−S23|

|(ls1)J1, (λS23)J; JMJ〉(−1)λ+l+L
√

[L][S][J1][J]







l s1 J1
λ S23 J

L S J







, (92)

где s1 = 1/2, а спин S23 пары (2,3) равен 1 в случае существования нетривиальных значений МЭ спин-
орбитальных и тензорных сил. На основании приведенных выше результатов можно показать, что

slV γ̃′γ̃
1ij = 〈ϕγ̃′i|slV1(τ23x1;S23λλλλ)|ϕγ̃j〉 =

√

[S′][S]IslR Jsl
Ω δγ′γ δS′

23
S23

, (93)
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где

Jsl
Ω =

l+ 1
2

∑

J1=|l− 1
2
|

λ+1
∑

J=|λ−1|

(J(J + 1) − λ(λ + 1) − S23(S23 + 1))[J1][J]







l 1
2 J1

λ 1 J

L′ S′ J













l 1
2 J1

λ 1 J

L S J







, (94)

а IslR дается формулой (81). В свою очередь,

tV γ̃′γ̃
1ij = 〈ϕγ̃′i|tV1(τ23x1;S23)|ϕγ̃j〉 =

√

[S′][S]ItRJ
t
Ω δl′l δS′

23
S23

δ1S23
, (95)

где

J t
Ω =

l+ 1
2

∑

J1=|l− 1
2
|

λ+1
∑

J=|λ−1|

[J1][J]







l 1
2 J1

λ′ 1 J

L′ S′ J













l 1
2 J1

λ 1 J

L S J







T J

λ′λ, (96)

а T J

λ′λ и ItR описываются выражениями (88) и (90) соответственно.
МЭ тензорных сил (83) в подсистемах (1,2) или (1,3) равны

tV γ̃′γ̃
qij = 〈ϕγ̃′i|tVq(τ1pxq ;S1p)|ϕγ̃j〉 = NiNj

∫

{

xλ′

1 yl
′

1 F
JMJ

γ′S′

23
L′S′

}

exp(−αλ′ix
2
1 − βl′iy

2
1)

tVq(τ1pxq)×

× Ŝ1p

{

xλ
1y

l
1F

JMJ

γS23LS

}

exp(−αλjx
2
1 − βljy

2
1) dx1 dy1 dξξξξ, (97)

где (p, q) = (2, 3) или (3, 2). Для расчета tV γ̃′γ̃
qij воспользуемся описанным выше методом «враще-

ния–диагонализации» базисной функции. Очевидно тензорный оператор Ŝ1p не затрагивает функцию
exp(−αλjx

2
1 − βljy

2
1), преобразованную к виду exp{−µγ

qjx
2
q − νγqjy

2
q − ργqj(xqyq)} после перевязки базисных

функций матрицей X̂1 = (1q)X̂q. Кроме этого, последующая диагонализация квадратичной формы (59)
матрицей P (58) не влияет на тензорный оператор, поскольку при таком преобразовании (xq,yq) → (xq,y)
вектор xq сохраняется. Поэтому после результирующего преобразованияQ = (1q)P аналогично (61) имеем:

tV γ̃′γ̃
qij = NiNj

∫

exp(−ωγ′γ
qij x

2
q − νγ

′γ
qij y

2)
{

xλ′

1 yl
′

1 F
JMJ

γ′S′

23
L′S′

}(xqy)

Q

tVq(τ1pxq)×

× Ŝ1p

{

xλ
1y

l
1F

JMJ

γS23LS

}(xqy)

Q
dxq dy dξξξξ. (98)

Поскольку спиновые функции не затрагиваются преобразованием Q, стоящие в фигурных скобках (98)
шаровые функции изменяются точно в соответствии с законом преобразования (31). Соответственно ана-
логично (63) выражение (98) сводится к виду

tV γ̃′γ̃
qij = NiNj

λ
∑

L1=0

l
∑

L2=0

λ′

∑

L3=0

l′
∑

L4=0

∑

j1j2j3j4

AL′L3L4Q
γ′j3j4

ALL1L2Q
γj1j2

×

×
∫ ∞

0

xL1+L2+L3+L4+2
q

tVq(τ1pxq) exp(−ωγ′γ
qij x

2
q) dxq

∫ ∞

0

yλ
′+l′+λ+l−(L1+L2+L3+L4)+2 exp(−νγ

′γ
qij y

2) dy×

× 〈FJMJ

j3j4S′

23
L′S′(x̂q , ŷ; ξξξξ)|Ŝ1p|FJMJ

j1j2S23LS(x̂q, ŷ; ξξξξ)〉, (99)

причем радиальные части выражений (63) и (99) с точностью до радиальных потенциалов V
(1)
q (τ1pxq)

и tVq(τ1pxq) одинаковы. Теперь задача сводится к расчету МЭ 〈FJMJ

j3j4S′

23
L′S′ |Ŝ1p|FJMJ

j1j2S23LS〉. Учитывая схему

сложения моментов, запишем F
JMJ

j1j2S23LS в виде

F
JMJ

j1j2S23LS = |(j1j2)L, (s1S23)S; JMJ〉. (100)

При этом спиновая часть функции (100)

XSMS

S23
(ξξξξ) = |s1, (s2s3)S23;SMS〉, (101)

где si = 1/2 — спин i-го фермиона (i = 1, 2, 3). Для расчета МЭ тензорных сил в подсистеме (1,3) преобра-

зуем XSMS

S23
следующим образом:

|s1, (s2s3)S23;SMS〉 =
∑

S13

|(s1s3)S13, s2;SMS〉(−1)s1+s2+s3+S23+S+1
√

[S13][S23]

{

s1 s3 S13

s2 S S23

}

. (102)
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Поскольку тензорные силы отличны от нуля лишь в триплетном спиновом состоянии парной подсистемы
(S13 = 1), формула (102) принимает вид

|s1, (s2s3)S23;SMS〉 = |(s1s3)S13, s2;SMS〉 (−1)S23+S+ 1
2

√

3[S23]

{

1
2

1
2 1

1
2 S S23

}

. (103)

Для вычисления МЭ потенциала в подсистеме (1,2) производим перевязку |s1, (s2s3)S23;SMS〉 →
→ |(s1s2)S12, s3;SMS〉. Соответствующий результат будет отличаться от численной части выражения (103)
фазой (−1)1+S23 , связанной с симметрией спиновой функции XS23m23 по отношению к перестановкам ча-
стиц. Учитывая это обстоятельство, а также соотношение (103), преобразуем функцию (100) к виду с вы-
делением полного углового момента J1 пары (1,2) или (1,3):

|(j1j2)L, (s1S23)S; JMJ〉 = |(j1j2)L, (S1psq)S; JMJ〉 × (−1)S23+S+ 1
2
+(1+S23)δ3q

√

3[S23]

{

1
2

1
2 1

1
2 S S23

}

=

=

j1+1
∑

J1=|j1−1|

j2+
1
2

∑

J2=|j2−
1
2
|

|(j1S1p)J1, (j2sq)J2; JMJ〉(−1)S23+S+ 1
2
+(1+S23)δ3q×

×
√

3[S23][S][L][J1][J2]

{

1
2

1
2 1

1
2 S S23

}







j1 1 J1
j2

1
2 J2

L S J







, (104)

где (p, q)=(2,3) или (3,2). Следовательно,

〈FJMJ

j3j4S′

23
L′S′ |Ŝ1p|FJMJ

j1j2S23LS〉 =

= (−1)1+S′+S+(S′

23+S23)δ2q 3
√

[S′
23][S23][S′][S][L′][L]

{

1
2

1
2 1

1
2 S′ S′

23

}{

1
2

1
2 1

1
2 S S23

}

×

×
∑

J1J2J3J4

√

[J1][J2][J3][J4]







j3 1 J3
j4

1
2 J4

L′ S′ J













j1 1 J1
j2

1
2 J2

L S J







×

× 〈(j3S′
1p)J3, (j4s

′
q)J4; JMJ |Ŝ1p|(j1S1p)J1, (j2sq)J2; JMJ〉. (105)

Действуя тензорным оператором Ŝ1p на спин-угловую функцию Y
J1mJ1

j1S1p
парной подсистемы (1, p), имеем

〈(j3S′
1p)J3, (j4s

′
q)J4; JMJ |Ŝ1p|(j1S1p)J1, (j2sq)J2; JMJ〉 = T J1

j3j1
δS′

1pS1p
δ1S1p

δJ3J1
δj4j2 δs′qsq δJ4J2

, (106)

где T J1

j3j1
дается равенством (88) с заменой λ′ → j3, λ → j1, J → J1. Наконец, подставляя выражение (106)

в (99) и вычисляя радиальную часть (99), находим МЭ тензорных сил в подсистемах (1,2) и (1,3)

tV γ̃′γ̃
qij = (−1)1+S′+S+(S′

23+S23)δ2q 3Pij(λ
′, λ, l′, l)×

×
(

[S′
23][S23][S

′][S][L′][L]

πE

)1/2{ 1
2

1
2 1

1
2 S′ S′

23

}{

1
2

1
2 1

1
2 S S23

}

×

×
∑

L1L2L3L4

∑

j1j2j3

AL′L3L4Q
γ′j3j2

ALL1L2Q
γj1j2

Kt
Ω

(

νγ
′γ

qij

)

n−m−3

2

2
n+m

2
+5(m− n+ 1)!! tV[n+2]

q (ωγ′γ
qij ), (107)

где m = λ′ + l′ + λ+ l, n = L1 + L2 + L3 + L4, а Kt
Ω дается выражением

Kt
Ω =

j1+1
∑

J1=|j1−1|

j2+
1
2

∑

J2=|j2−
1
2
|

[J1][J2]







j3 1 J1
j2

1
2 J2

L′ S′ J













j1 1 J1
j2

1
2 J2

L S J







T J1

j3j1
. (108)

ЗАКЛЮЧЕНИЕ

В данной работе подробно представлена методи-
ка расчета МЭ гамильтониана системы их трех
частиц на гауссовом базисе с учетом централь-

ных, спин-орбитальных и тензорных взаимодей-
ствий между парами частицам.

Важно отметить, что данная методика позволя-
ет свести МЭ к аналитическим формулам, что при-
водит к следствиям, далеко выходящим за рамки
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простого удобства. Дело в том, что при вычисле-
ниях на рассматриваемом базисе генераторного ти-
па матрица гамильтониана является, строго говоря,
плохо обусловленной. Это означает, что небольшие
погрешности в значениях МЭ могут повлечь за со-
бой существенное изменение собственных значений.
Поэтому если МЭ не выражаются в аналитическом
виде, а должны находиться путем численного ин-
тегрирования, то для каждого класса потенциалов
необходима специальная численная техника вычис-

ления многомерных интегралов, обеспечивающая
высокую точность расчета МЭ. Однако в данном
случае эта точность определяется только разряд-
ной сеткой компьютера и малыми погрешностями
округления. Это позволяет добиться высокой устой-
чивости вычислений собственных значений гамиль-
тониана даже с матрицами большой размерности.

Автор благодарит В.Н. Померанцева за полезные
обсуждения.
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