
ВМУ. Серия 3. ФИЗИКА. АСТРОНОМИЯ. 81(1), 2610206 (2026)

ФИЗИКА АТОМНОГО ЯДРА И ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Cеминар памяти Б.С. Ишханова «Фотоядерные исследования. Состояние и перспективы»

Описание кулоновских барьеров в реакциях слияния изотопов кальция

М. С. Косарев,1,2, ∗ Н. Н. Арсеньев,1, † А. П. Северюхин1, 3, ‡

1Объединенный институт ядерных исследований, Лаборатория теоретической физики им. Н.Н. Боголюбова

Россия, 141980, Московская обл., г. Дубна, ул. Жолио-Кюри, д. 6
2Московский государственный университет имени М.В. Ломоносова, физический факультет

Россия, 119991, Москва, Ленинские горы, д. 1, стр. 2
3Государственный университет «Дубна»

Россия, 141982, Московская обл., г. Дубна, ул. Университетская, д. 19

(Поступила в редакцию 10.12.2025; после доработки 15.01.2026; подписана в печать 17.01.2026)

В рамках теории функционала плотности энергии (ФПЭ) исследуется влияние скорост-
ных членов ФПЭ Скирма на высоту и положение кулоновского барьера в реакциях слияния
40Ca+36−62Ca. Ядро-ядерные потенциалы вычислялись в рамках формализма двойной сверт-
ки. Показано, что усиление скоростных членов заметно улучшает описание кулоновского ба-
рьера в исследуемых реакциях. Изучена линейная корреляция между высотой и положением
барьера. Выявлено влияние оболочечных эффектов на характеристики кулоновского барьера
в реакциях 40Ca+36−62Ca.
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ВВЕДЕНИЕ

Получение новых изотопов представляет собой
один из первых шагов в исследовании свойств са-
мых экзотических ядер. Синтез новых изотопов
с нейтронным или протонным избытком, а так-
же сверхтяжелых элементов посредством столкно-
вений тяжелых ионов низкой энергии вблизи ку-
лоновского барьера является важным направлени-
ем исследований в области ядерной физики. Пол-
ное слияние ядер, приводящее к образованию воз-
бужденного составного ядра, является одним из
ключевых ядерных процессов, происходящих при
столкновениях двух сложных ядер при энергиях
10–20 МэВ на нуклон [1–4] На сегодняшний день
накоплен значительный экспериментальный мате-
риал [5, 6] и создан ряд теоретических моделей (см.,
например, [7, 8]).

Самосогласованная теоретическая модель долж-
на охватить весь процесс полного слияния, вклю-
чая структуру взаимодействующих ядер, взаимо-
действие коллективных и внутренних степеней сво-
боды, а также переход от быстрого неравновесно-
го динамического состояния к статистически рав-
новесной системе [8]. Концепция потенциала ядро-
ядерного взаимодействия позволяет анализировать
эволюцию потенциальной энергии между двумя
сталкивающимися ядрами [7]. Формализм двойной
свертки [2] для расчета потенциала ядро-ядерного
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взаимодействия обеспечивает простую численную
реализацию [9]. В этом подходе плотности нукло-
нов как в налетающем ядре, так и в ядре-мише-
ни описываются с использованием феноменологи-
ческого потенциала Вудса–Саксона, что позволило
успешно описать различные особенности слияния
(см., например, [10, 11]). Однако основным ограни-
чением является феноменологический выбор плот-
ностей и параметров модели.

Дальнейшее развитие формализма заключалось
в учете самосогласования через использование
функционала плотности энергии (ФПЭ) для рас-
чета потенциала ядро-ядерного взаимодействия.
В частности, различные нерелятивистские функци-
оналы [12–15] применялись для вычисления потен-
циала ядро-ядерного взаимодействия, что позволи-
ло устранить несогласованность в расчетах ядерной
структуры и барьеров слияния [16].

Хорошо известно, что ФПЭ Скирма [17, 18] так-
же может быть применен для вычисления барьеров
слияния. В частности, в работах [19, 20] были прове-
дены расчеты барьеров слияния на базе ФПЭ SkM∗

в сочетании с полуклассическим приближением То-
маса–Ферми. Результаты этих расчетов показыва-
ют, что они близки к значениям, полученным в рам-
ках феноменологических моделей. Однако при этом
плотности были аппроксимированы с использова-
нием параметризованной функции, что добавляет
элемент модельной зависимости результатов расче-
тов. В работе [21] в рамках формализма двойной
свертки было показано влияние скоростных членов
ФПЭ Скирма на характеристики барьера. Усиление
этих членов заметно улучшало качество описания
как высоты, так и положения кулоновского барье-
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ра. На основе проведенного анализа был предложен
новый набор параметров ФПЭ SLy4B [21].

Цепочка изотопов Ca традиционно служит поли-
гоном как для экспериментальных, так и для теоре-
тических исследований. В частности, интерес к изу-
чению слияния различных комбинаций изотопов
Ca вызван обнаруженным явлением подбарьерного
«усиления слияния» [22]. Кроме того, недавние экс-
перименты указывают на появления новых магиче-
ских чисел N = 32 [23] и 34 [24]. Также был открыт
нейтронно-избыточный изотоп 60Ca [25], в котором
можно ожидать проявления свойств магического
ядра вследствие заполнения подоболочки N = 40.
В настоящей работе мы проиллюстрируем возмож-
ности нового ФПЭ SLy4B [21] для описания высо-
ты и положения кулоновского барьера в реакциях
40Ca+36−62Ca, а также исследуем структурные осо-
бенности, возникающие вдоль данной изотопной це-
почки ядер-мишени.

1. МЕТОД

Процесс полного слияния можно разбить на три
последовательно протекающие стадии: захват, пе-
рестройку и распад. На стадии захвата происходит
полная диссипация кинетической энергии и форми-
руется специфический ядерный объект — двойная
ядерная система (ДЯС) [1]. В процессе эволюции
ДЯС происходит передача нуклонов от одного яд-
ра к другому. Важная особенность этой системы
состоит в том, что, несмотря на интенсивное взаи-
модействие между ядрами, входящими в неё, они
в широком пределах сохраняют свою индивидуаль-
ность на всем протяжении эволюции системы к со-
ставному ядру.

Отправной точкой нашего метода является опре-
деление свойств основного состояния путем реше-
ния уравнений Хартри–Фока (ХФ) с ФПЭ Скир-
ма. Спаривание трактуется в приближении Бар-
дина–Купера–Шриффера (БКШ). Одночастичный
континуум дискретизуется посредством диагонали-
зации гамильтониана ХФ в базисе гармонического
осциллятора [26]. Гамильтониан включает взаимо-
действие Скирма в частично-дырочном (ph) канале
и зависящие от плотности контактные силы в кана-
ле частица-частица (pp):

Vpair(r1, r2) = V0

[

1− η
ρ (r1)

ρ0

]

δ (r1 − r2) . (1)

Здесь ρ(r1) — плотность ядерной материи, а ρ0 —
плотность насыщения ядерной материи. Параметр
η варьируется от 0 до 1, что соответствует случаям
объемного и поверхностного взаимодействия. Пара-
метр V0 фиксируется так, чтобы воспроизводить
разницу масс соседних нечетных и четно-четных
ядер в изучаемой области.

Остаточное взаимодействие V ph может быть по-
лучено как вторая производная функционала плот-
ности энергии по плотности нуклонов ρ. Следуя ра-
боте [27], мы упрощаем остаточное взаимодействие

в форме, аналогичной силам Ландау–Мигдала и со-
храняем только члены с l = 0 [26]. При расчетах
ядро-ядерного потенциала можно пренебречь чле-
нами, зависящими от спина и изоспина, так как их
вклад незначителен. Также не принимаются во вни-
мание кулоновское и спин-орбитальное частично-
дырочные взаимодействия. Тогда остаточное взаи-
модействие можно записать следующим образом:

V ph(r′
1
, r′

2
) = N−1

0
F0(r

′
1
)δ (r′

1
− r′

2
) , (2)

где параметр Ландау F0 имеет вид

F0(r) = N0

(

3

4
t0 +

1

16
t3ρ

α(r)(α + 1)(α+ 2)+

+
1

8
k2F θs

)

. (3)

Здесь комбинация θs = 3t1+(5+4x2)t2 отвечает за
скоростные слагаемые ФПЭ Скирма, а t0,1,2,3, x2

и α — параметры данного функционала (см. табли-
цу). Коэффициент N0 = 2kFm

∗/π2
~
2 с kF и m∗, со-

ответствующими импульсу Ферми и эффективной
нуклонной массе.

Динамику движения ядер во входном канале
можно описать в приближении удара, а взаимодей-
ствие — суммой кулоновского VC , центробежного Vl

и ядерного VN потенциалов [1]

V (R) = VC(R) + Vl(R) + VN (R). (4)

Здесь R — эффективное расстояние между центра-
ми сталкивающихся ядер. Опираясь на работу [9],
кулоновский потенциал для двух взаимодействую-
щих ядер с массовыми числами Ai, зарядами Zi

и радиусами ri (i = 1, 2) можно записать следую-
щим образом:

VC(R) =
Z1Z2e

2

R
. (5)

Данное приближение справедливо, когда расстоя-
ние R равно или превышает сумму радиусов стал-
кивающихся ядер (R ≥ r1 + r2). В этом случае по-
тенциал VC совпадает с кулоновским потенциалом
для двух точечных зарядов Z1e и Z2e. В реакциях
слияния этот сценарий реализуется с высокой точ-
ностью [9].

Центробежный потенциал Vl изменяется в ходе
взаимодействия сталкивающихся ядер [1]. Ядерное
трение, а именно его тангенциальная составляю-
щая, приводит к преобразованию орбитального уг-
лового момента в спины взаимодействующих ядер.
В предельном случае, когда тангенциальное и ра-
диальное трение становятся интенсивными, про-
исходит полная диссипация кинетической энергии
и формируется система из двух слипшихся ядер,
которая вращается как единое целое, подобно ган-
телям. В настоящей работе исследуется лобовое
столкновение сферических ядер, что позволяет при
расчетах не учитывать вклад центробежного потен-
циала.
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Ядерный потенциал VN брался в виде потенциала
двойной свертки [2]

VN (R) =

∫

dr1dr2ρ1(r1)ρ2(r2)V
ph(r1, r2 + R) (6)

и может быть представлен следующим образом [21]:

VN (R) =

(

3

4
t0 +

1

8
k2F θs

)
∫

drρ1(r)ρ2(r − R)+

+
1

16
t3(α+ 1)(α+ 2)×

×

∫

dr
[

ρ1(r) + ρ2(r − R)
]α
ρ1(r)ρ2(r − R). (7)

Для того чтобы налетающее ядро могло быть захва-
чено ядром-мишенью, необходимо наличие кармана
в потенциале взаимодействия. Так как второй член
в выражении (7) имеет положительный вклад, необ-
ходим отрицательный вклад первого члена. Как
показано в работе [21], одним из способов увели-
чить глубину кармана является усиление скорост-
ных членов ФПЭ Скирма, который используется
при вычислении ядерного потенциала VN .

2. РЕЗУЛЬТАТЫ РАСЧЕТОВ

Как отобрать ФПЭ Скирма, который правиль-
но описывает ядро-ядерный потенциал (4)? В ка-
честве исходной точки был выбран ФПЭ SLy4 [28]
(см. таблицу), так как данный ФПЭ зарекомендо-
вала себя как надежный инструмент для описания
свойств ядер-мишени (см., например, [29, 30]). Од-
нако данный функционал заметно переоценивает
высоту кулоновского барьера слияния [21]. С дру-
гой стороны, за счет усиления скоростных членов
ФПЭ удалось заметно улучшить качество описыва-
ния высоты и положения барьера. В результате был
предложен новый набор параметров ФПЭ Скирма
SLy4B [21] (см. таблицу). На рис. 1, а представле-
но сравнение энергии связи четно-четных изотопов
36−62Ca в зависимости от числа нейтронов, вычис-
ленные с использованием метода ХФ–БКШ с ФПЭ
SLy4 и SLy4B. Для учета нейтронных парных кор-
реляций в обоих функционалах было выбрано кон-
тактное взаимодействие, т.е. η = 0 в (1). Силовой
параметр V0 = −270 МэВ·фм3 был зафиксирован
так, чтобы воспроизвести нейтронные парные энер-
гии изотопов 50,52,54Ca [31]. Как видно из рис. 1, а,
экспериментальные значения [32] для энергии связи
изотопов 36−62Ca воспроизводятся с хорошей точно-
стью как ФПЭ SLy4, так и SLy4B. Максимальное
отклонение не превышает 2% в случае ФПЭ SLy4B.

Следует отметить, что новый ФПЭ SLy4B уступа-
ет в качестве описания энергии связи в нейтронно-
дефицитных изотопах Ca по сравнению с функцио-
налом SLy4, но значительно лучше воспроизводит
значения для нейтронно-избыточных изотопов.
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Рис. 1. а — Энергия связи четно-четных изотопов Ca
в зависимости от числа нейтронов. Результаты расче-
тов, выполненных с использованием метода ХФ-БКШ
с ФПЭ SLy4 (△) и SLy4B (N), сопоставлены с экспери-
ментальными данными или их экстраполяцией (•) из
AME2020 [32]. б — Обозначения такие же, как и на ри-
сунке а, но для толщины нейтронной «шубы» ∆Rnp.
Экспериментальные значения взяты из [33, 34]

Таблица. Параметры ФПЭ

Параметры SLy4B SLy4

[21] [28]

t0 (МэВ·фм3) –2569.54 –2488.91

t1 (МэВ·фм5) 648.80 486.82

t2 (МэВ·фм5) –546.39 –546.39

t3 (МэВ·фм3+3α) 13777.0 13777.0

x0 0.834 0.834

x1 –0.344 –0.344

x2 –1.10 –1.00

x3 1.354 1.354

α 0.1667 0.1667

W0 (МэВ·фм5) 123.0 123.0

θs(МэВ·фм5) 1400.0 914.1

Интересно рассмотреть, как усиление скорост-
ных членов ФПЭ влияет на толщину нейтрон-
ной «шубы», ∆Rnp, в изотопах 36−62Ca. Толщи-
на нейтронной «шубы», определяемая как разни-
ца между среднеквадратичными радиусами нейтро-

нов 〈r2n〉
1/2

и протонов 〈r2p〉
1/2

, показана на рис. 1, б.
Можно заметить, что усиление скоростных чле-
нов в ФПЭ SLy4B приводит к улучшению описа-
ния толщины нейтронной «шубы» по сравнению
с расчетами SLy4. Отметим, что результаты рас-
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Рис. 2. Зависимость высоты (а) и положения (б) кулоновского барьера от числа нейтронов ядра-мишени для реак-
ций 40Ca+36−62Ca. Экспериментальные данные взяты из работы [35]

четов с SLy4B предсказывают более резкое увели-
чение толщины нейтронной «шубы» после изотопа
48Ca по сравнению с результатами, полученными
при использовании SLy4. По-видимому, функцио-
нал SLy4B более чувствителен к изменению обо-
лочечной структуры при пересечении нейтронных
оболочек c магическими числами N = 28 и 40. Ре-
зультаты расчетов предсказывает незначительный
излом в поведении толщины нейтронной «шубы»
для изотопа 54Ca, где наблюдается заполнение ней-
тронной подоболочки N = 34. Данная подоболочка
сейчас рассматривается как гипотетическая маги-
ческая оболочка (см., например, [31]).

В рамках формализма двойной свертки были вы-
числены значения высоты и положения кулонов-
ского барьера реакции слияния с участием изото-
пов Ca, где в качестве налетающего ядра исполь-
зуется изотоп 40Ca, а в качестве ядра-мишени —
четно-четные изотопы 36−62Ca. Результаты расче-
тов представлены на рис. 2. Видно, что с ростом
нейтронного избытка в ядре-мишени отмечается
снижение высоты барьера с 60.3 до 53.1 МэВ в слу-
чае реакции 40Ca+36Ca и 40Ca+62Ca соответствен-
но. Такое поведение можно объяснить тем фактом,
что с увеличением числа нейтронов в ядре-мише-
ни увеличивается вклад ядерной части ядро-ядер-
ного потенциала, что приводит к снижению высо-
ты кулоновского барьера. Следует отметить, что
если в качестве ядра-мишени используются изото-
пы Ca с числом нейтронов N = 20, 28 и 34, то на-
блюдается излом в рассматриваемой зависимости.
Это указывает, что при прохождении через соответ-
ствующие оболочки происходит более значитель-
ный рост вклада ядерной части потенциала VN , что
связано с изменениями в структуре данных изото-
пов Ca. Однако рассчитанные значения высоты ба-
рьера превышают экспериментальные значения [35]
(см. рис. 2, а). С другой стороны, имеющиеся дан-
ные демонстрируют также нисходящий тренд вы-
соты барьера от числа нейтронов в ядре-мишени.
В случае ФПЭ SLy4B, усиление скоростных чле-
нов ФПЭ приводит к снижению барьера в сред-

нем на 1.7 МэВ и улучшает описание. Как видно
из рис. 2, а, в расчетах с ФПЭ SLy4B выявленные
ранее закономерности зависимости высоты барьера
от числа нейтронов в ядре-мишени сохраняются:
плавное снижение высоты барьера с увеличением
нейтронного избытка, так излом при прохождении
через оболочки N = 20, 28 и 34.
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Рис. 3. Зависимость высоты кулоновского барьера от
его положения для реакций 40Ca+36−62Ca, вычислен-
ные с использованием ФПЭ SLy4B

Рассчитанное положение кулоновского барьера
монотонно увеличивается с ростом нейтронного из-
бытка (см. рис. 2, б ) и составляет 8.5 и 9.9 фм для
реакции 40Ca+36Ca и 40Ca+62Ca соответственно.
Предсказанная зависимость количественно отлича-
ется от экспериментальной, основанной на ограни-
ченном числе данных. Для реакции 40Ca+48Ca зна-
чения, полученные из различных измерений, варьи-
руются в диапазоне от 7.86 до 11.29 фм [35], а для
реакции 40Ca+44Ca дают значение положения ба-
рьера с большими ошибками (около 1.66 фм).

Наши расчеты показывают, что эффект запол-
нения нейтронных оболочек при N = 20, 28 и 34
не проявляется так явно, как в случае высоты ба-
рьера. Отметим излом при прохождении через за-
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мкнутую оболочку N = 28. По-видимому, поло-
жение кулоновского барьера не так чувствительно
к оболочечной структуре. В случае ФПЭ SLy4B
увеличение скоростных членов приводит к смеще-
нию положения кулоновского барьера в среднем
на 0.3 фм (см. рис. 2, б ).

Рассмотрим взаимосвязь между высотой и по-
ложением кулоновского барьера для реакций
40Ca+36−62Ca. На рис. 3 представлена зависимость
этих характеристик, вычисленных с использовани-
ем ФПЭ SLy4B. Наблюдается линейная корреляция
между указанными величинами. Отметим, что ли-
нейная корреляция сохраняется в расчетах при от-
сутствии спаривания.

ЗАКЛЮЧЕНИЕ

В настоящей работе в рамках функционала плот-
ности энергии Скирма изучено влияние скорост-
ных слагаемых ФПЭ на формирование ядро-ядер-
ного потенциала и параметры кулоновского ба-
рьера для реакций с участием изотопов 36−62Ca.
Ядро-ядерный потенциал вычислялся в формализ-
ме двойной свертки. Предложенный ранее функ-
ционал SLy4B продемонстрировал высокую надеж-

ность при описании свойств основного состояния
изотопов 36−62Ca, включая энергию связи и толщи-
ну нейтронной «шубы». В области нейтронно-избы-
точных ядер функционал SLy4B показал более точ-
ное соответствие экспериментальным данным по
сравнению с исходным ФПЭ SLy4. Анализ кулонов-
ского барьера в реакциях 40Ca+36−62Ca показал,
что его высота снижается в среднем на 1.7 МэВ при
увеличении скоростных членов ФПЭ.

Установлено, что с ростом нейтронного избыт-
ка в ядре-мишени высота барьера уменьшается
благодаря возрастанию вклада ядерной части
ядро-ядерного потенциала. Также была выявлена
линейная зависимость между высотой барье-
ра и его положением. Кроме того, обнаружено
влияние оболочечных эффектов на характеристи-
ки кулоновского барьера в реакциях 40Ca+36−62Ca.

Авторы выражают признательность Н.В. Ан-
тоненко и В.В. Саргсяну за конструктивные
обсуждения в процессе выполнения работы.

Исследование было поддержано в рамках на-
учной программы Национального центра физики
и математики, направление № 6 «Ядерная и радиа-
ционная физика» (этап 2023–2025).
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Description of Coulomb Barriers in Fusion Reactions of Calcium Isotopes
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The energy density functional (EDF) theory has been applied to the study of the influence of the velocity-
dependent terms of the Skyrme EDF on the height and position of the Coulomb barrier in the fusion
reactions 40Ca+36–62Ca. The nucleus–nucleus interaction potentials were calculated within the double-folding
formalism. It is shown that the enhancement of the velocity-dependent terms significantly improves the
description of the Coulomb barrier in the studied reactions. A linear correlation between the height and
position of the barrier has been examined. The influence of shell effects on the properties of the Coulomb
barrier in the reactions 40Ca+36–62Ca is revealed.
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