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Рассматривается обратная задача восстановления многоканального изображения, искажён-
ного вследствие дефокусировки и сопутствующей ей хроматической аберрации. Такая поста-
новка возникает в прикладных задачах офтальмологии, связанных с диагностикой живых
структур глаза человека оптическими методами in vivo. Предложена математическая модель,
описывающая формирование многоканального изображения на основе системы интегральных
уравнений типа свёртки. Для решения некорректной обратной задачи восстановления много-
канального изображения разработан алгоритм на основе неявного итерационного метода в со-
четании с правилом выбора локализованного по частотам параметра итерационного метода
и критерием останова. Результаты работы программной реализации предложенного метода
позволяют судить о его эффективности в обратной задаче восстановления многоканального
изображения, в том числе для случая изображений большого разрешения, характерных для
медицинских приложений.
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ВВЕДЕНИЕ

В современной офтальмологии диагностика раз-
личных заболеваний глаза, основанная на анализе
глазного дна с использованием изображений с фун-
дус-камеры, может быть затруднена из-за нали-
чия в оптической системе различных аберраций.
Это может быть вызвано как заболеванием, напри-
мер катарактой, так и операцией по замене хру-
сталика на линзу, которая может в зависимости
от своего строения вносить различные аберрации
в оптическую систему. При этом на получаемом
трёхканальном изображении присутствует искаже-
ние цветовой гаммы, называемое хроматической
аберрацией, что вызвано неравномерным искажени-
ем различных каналов изображения. Такие эффек-
ты являются нежелательными, и ставится задача
их компенсации.

В настоящей работе исследуется вопрос восста-
новления многоканальных изображений в стандарт-
ном формате RGB. Математическая постановка за-
дачи восстановления многоканального изображе-
ния объекта, который излучает в видимом спектре,
записывается с помощью двумерного интегрально-
го уравнение Фредгольма 1-го рода типа свертки.
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При этом функции, входящие в это двумерное ин-
тегральное уравнение, зависят не только от дву-
мерных координат, но и от длины волны. Указан-
ное уравнение описывает процесс прохождения сиг-
нала от объекта через оптическую систему. Имен-
но на этом этапе возникают различные аберрации,
которые определяют зависящее от длины волны
ядро интегрального уравнения, называемое функ-
цией рассеяния точки (ФРТ/PSF — point spread
function). В качестве такого типичного представи-
теля классической аберрации оптической системы
рассматривается дефокусировка, принципиальная
особенность которой состоит в том, что PSF при
большой дефокусировке имеет сильно осциллиру-
ющий характер, существенно отличающий ее от
традиционно используемых упрощенных моделей
размытия, которые обычно сводятся к цилиндру
([1–4]) или гауссовой функции ([5–10]). PSF в при-
ближении геометрической оптики можно встретить
не так часто [11–14]. При этом такие физически
корректные модели более точны, поэтому в на-
стоящей работе был выбран подход, аналогичный
[13, 14], с той лишь разницей, что оптическая си-
стема рассматривается в приближении Френеля
с учётом зрачка.

В современной литературе большинство публика-
ций, связанных с восстановлением многоканальных
изображений, обычно рассматриваются в контексте
специфических приложений в микроскопии и ме-
дицине. Многие из них используют как упрощён-
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ные модели PSF, так и упрощённые модели фор-
мирования каналов изображения, не подразумева-
ющие какой-либо взаимосвязи между ними. Напри-
мер, в [15, 16] используется модель функции рас-
сеяния точки в виде цилиндра, а каналы изобра-
жения обрабатываются независимо. Последнее яв-
ляется упрощением процесса формирования много-
канального изображения и не позволяет эффектив-
но бороться с хроматической аберрацией. Тем не
менее бывают и более специфические случаи дву-
канальных медицинских изображений клеток [17],
когда требуется более точная модель PSF. Поэто-
му ядро уравнения аппроксимируется исходя из от-
дельного эксперимента, в котором получают пара-
метры оптической системы для используемого мик-
роскопа. При этом в процессе восстановления ис-
пользуется информация о взаимосвязи каналов, по-
лученная с помощью коллокации. Такой подход да-
ёт адекватные результаты и показывает важность
взаимосвязи каналов реконструируемого изображе-
ния. В самых свежих публикациях подобный под-
ход становиться всё более распространённым, на-
пример в [18], где авторы используют теорию ква-
тернионов для описания искажения изображения,
важность взаимосвязи каналов и вопрос примени-
мости методов обработки монохромного изображе-
ния к цветному выделены особо.

Также рассматриваемую задачу решают и с помо-
щью методов машинного обучения. Так, в [19] для
этого используется комбинация обученного класси-
ческого алгоритма и нейронной сети. Алгоритм со-
стоит из двух этапов. На первом этапе производит-
ся деконволюция, где ядро аппроксимируется гаус-
совой функцией на основе данных о большом числе
линз. На втором этапе нейронная сеть удаляет го-
ризонтальные хроматические аберрации, которые
не восстанавливаются на первом этапе. Использу-
емая в методе модель формирования изображения
фокусируется по большей части на аберрациях, не
связанных с дефокусировкой. Упрощенный выбор
ядра обусловлен требованием к скорости работы
алгоритма. Аналогичный подход комбинирования
классического алгоритма регуляризации Тихонова
и нейронной сети можно найти в [20]. В обеих ра-
ботах ([19, 20]) каналы изображения фактически
обрабатываются независимо. Отметим также более
специфические подходы к компенсации хроматиче-
ских аберраций, например основанные на геометри-
ческой деформации изображения [21].

1. ПОСТАНОВКА ЗАДАЧИ

Взаимодействие объекта с оптической системой
описывается в виде интегрального уравнения типа
свёртки:

Av =

∫∫

R2

h(x− s1, y − s2, λ)×

× v(s1, s2, λ) ds1 ds2 = u(x, y, λ), (1)

где u(x, y, λ) — наблюдаемая (искажённая) интен-
сивность, h(x, y, λ) — аппаратная функция прибо-
ра, характеризующая его отклик на объект (PSF —
point spread function), v = v(x, y, λ) — интенсив-
ность искомого реконструируемого объекта, кото-
рый излучает в видимом спектре на длине волны λ.

После прохождения оптической системы сигнал
u(x, y, λ) фиксируется на детекторе, который фор-
мирует 3-х канальное изображение в формате RGB
по следующему закону:

uj(x, y) =

∫

R

u(x, y, λ)Sj(λ) dλ, j = 0, 1, 2, (2)

где S0(λ), S1(λ), S2(λ) — весовые функции, j — но-
мер канала изображения (0 — R, 1 — G, 2 — B).

Вообще говоря, волновой фронт, дошедший до
детектора, может зависеть не только от его внут-
реннего устройства, но и от фильтров, установлен-
ных перед детекторами (фильтр пропускает сиг-
нал только на заданных его конструкцией длинах
волн), и спектра источника света. В этом случае
в предлагаемой постановке достаточно положить

Sj(λ) = sj(λ) · I(λ) · f(λ),

где sj(λ) — функция детектора, I(λ) — спектр
источника, f(λ) — функция, описывающая дей-
ствие фильтра (≡ 1, если фильтр перед объективом
не стоит).
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Рис. 1. Функции si(λ) на примере фотокамеры Canon
5D Mark III [22]

Как видно из рис. 1, носители sj(λ), вообще го-
воря, могут перекрываться, и приходится говорить
об «общем» носителе, являющемся их объединени-
ем. Обычно sj(λ) даны в неоткалиброванном ви-
де и представляют физический отклик сенсора на
волну заданной длины. Чтобы получаемое изобра-
жение соответствовало субъективному восприятию
цвета человеком, необходимо добавить нормировоч-
ный коэффициент. Калибровка детектора, вообще
говоря, может быть неизвестной или трудно полу-
чаемой. Тем не менее калибровку системы для кон-
кретного изображения можно получить исходя из
цветовой гаммы или, другими словами, отношения
интенсивностей каналов этого изображения. В на-
стоящей работе под «отношением интенсивностей»
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понимается тройка из максимумов интенсивностей
каждого канала:

max
(x,y)∈R2

u0(x, y), max
(x,y)∈R2

u1(x, y), max
(x,y)∈R2

u2(x, y).

В силу (2) каждый канал изображения, вообще
говоря, по-своему взвешивает h(x, y, λ) и, следова-
тельно, распределение искажений между uj(x, y)
будет неравномерным. Это, в свою очередь, приво-
дит к появлению хроматической аберрации —
изменению цветовой гаммы изображения, особенно
на контрастных краях.

Для получения замкнутой модели будем предпо-
лагать, что исходный объект представляется анало-
гично (2) в виде линейной комбинации 3 интенсив-
ностей:

v(x, y, λ) =

2∑

j=0

vj(x, y)Sj(λ). (3)

Сотношения (1), (2) и (3) позволяют записать за-
висимость каналов наблюдаемого изображения от
каналов исходного в следующем виде:

ui(x, y) =

2∑

j=0

∫∫

R2

(∫

R

h(x− s1, y − s2, λ)Si(λ)Sj(λ) dλ

)
vj(s1, s2) ds1 ds2.

Введём обозначение:

hi,j(x, y) =

∫

R

h(x, y, λ)Si(λ)Sj(λ) dλ, i, j = 0, 1, 2. (4)

В результате приходим к системе уравнений типа свёртки





u0(x, y) =
∑2

j=0

∫∫
R2 h0,j(x− s1, y − s2)vj(s1, s2) ds1 ds2,

u1(x, y) =
∑2

j=0

∫∫
R2 h1,j(x− s1, y − s2)vj(s1, s2) ds1 ds2,

u2(x, y) =
∑2

j=0

∫∫
R2 h2,j(x− s1, y − s2)vj(s1, s2) ds1 ds2.

(5)

Полученную систему удобно рассматривать
в спектральном пространстве. Введём следующие
обозначения:

Ui(ω, ν) = F(ui(x, y)), Vj(ω, ν) = F(vj(x, y)),

Hi,j(ω, ν) = F(hi,j(x, y)), i, j = 0, 1, 2,

где F — прямое преобразование Фурье, задаваемое
формулой:

Q(ω, ν) = F(q(x, y)) =

∫∫

R2

q(x, y)e−i(xω+yν)dxdy.

Обратное преобразование Фурье задаётся следую-
щим образом:

q(x, y) = F−1(Q(ω, ν)) =

=
1

4π2

∫∫

R2

Q(ω, ν)ei(xω+yν)dωdν.

С помощью теоремы о свёртке система интеграль-
ных уравнений (5) записывается в виде системы ли-
нейных алгебраических уравнений в спектральном
пространстве:






U0(ω, ν) =
∑2

j=0 H0,j(ω, ν)Vj(ω, ν),

U1(ω, ν) =
∑2

j=0 H1,j(ω, ν)Vj(ω, ν),

U2(ω, ν) =
∑2

j=0 H2,j(ω, ν)Vj(ω, ν).

(6)

1.1. Оптическая передаточная функция

В настоящей работе интегральное уравнение (1)
используется для моделирования изображающей

оптической системы в приближении Френеля с учё-
том зрачка [23]. Соответствующее ядро интеграль-
ного уравнения (PSF) имеет вид:

h(x, y, λ) =
∣∣∣F(P (x, y,R) · ei·a·(λ−λ0)·(x

2+y2))
∣∣∣
2

, (7)

где P (x, y,R) =

{
1, x2 + y2 6 R2,

0, x2 + y2 > R2 — индикатор-

ная функция зрачка; a — коэффициент дефокуси-
ровки; λ — длина волны; λ0 — длина волны, на ко-
торую сфокусирована оптическая система; i2 = −1.
При λ = λ0 функция рассеяния точки состоит толь-
ко из индикаторной функции зрачка. Если λ 6= λ0,
то возникает аберрация, вызванная ошибкой фоку-
сировки. Вообще говоря, λ0 может находиться за
пределами общего носителя функций детекторов.
В этом случае все каналы будут не в фокусе.

Остановимся на вопросе калибровки системы (6)
с целью сохранения цветовой гаммы изображения,
т.е. отношения максимумов ui(x, y). Во-первых, от-
метим, что для случая монохромного изображения
вводится понятие оптической передаточной функ-
ции (OTF — optical transfer function) (см. [23]):

H(ω, ν) =
F(h)(ω, ν)

F(h)(0, 0)
.

Во-вторых, учтём, что в такой нормировке
max(ω,ν) Hi,j(ω, ν) = 1. Кроме того, как показали
численные эксперименты, максимумы Hi,j(ω, ν)
и ui(x, y) после решения прямой задачи сов-
падают. Это приводит к тому, что все каналы
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ui(x, y) имеют одинаковый максимум, и, как
следствие, изображение теряет цветовую гамму.
Однако из (4) видно, что отношение интен-
сивностей сохраняется, если max(x,y) ui(x, y) =

=max(x,y) vi(x, y) ·
∑2

j=0 max(x,y) vj(x, y), т.е.

необходимо, чтобы max(ω,ν)Hi,j(ω, ν) =
= max(x,y) vi(x, y) · max(x,y) vj(x, y). Этого можно
достичь с помощью нормировки

Hi,j(ω, ν) = αi · αj ·
F(hi,j)(ω, ν)

F(hi,j)(0, 0)
,

где αi =

{
max(x,y) vi(x, y),

max(x,y) ui(x, y)
в зависимости от то-

го, решается ли прямая или обратная задача для
системы (6).

2. МЕТОД РЕШЕНИЯ ОБРАТНОЙ
ЗАДАЧИ

Чтобы решить обратную задачу для
системы (6), состоящую в нахождении
V (ω, ν) = (V1(ω, ν), V2(ω, ν), V3(ω, ν))

T по из-

вестным Hi,j(ω, ν) при неточно заданном
U(ω, ν) = (U1(ω, ν), U2(ω, ν), U3(ω, ν))

T , рас-
смотрим уравнения этой системы как СЛАУ

H̃(ω, ν) · Ṽ (ω, ν) = Ũ(ω, ν) в каждой точке (ω, ν)
с матрицей

H̃(ω, ν) =



H0,0(ω, ν) H0,1(ω, ν) H0,2(ω, ν)
H1,0(ω, ν) H1,1(ω, ν) H1,2(ω, ν)
H2,0(ω, ν) H2,1(ω, ν) H2,2(ω, ν)


 .

Особенность матриц H̃(ω, ν) состоит в том, что
возможен разброс собственных значений в диапа-
зоне от значений порядка 10−16 до порядка едини-
цы. В этой ситуации прямые методы малопримени-
мы из-за неустойчивости к возможным погрешно-
стям вычисления матриц и правых частей. Устой-
чивое к погрешностям исходных данных решение
может быть получено на основе построения регуля-
ризирующего оператора (см. [24], [25], [26] и др.).
В нашем случае был выбран неявный итерацион-
ный метод, успешно применявшийся ранее для ре-
шения задачи оптического секционирования трех-
мерного изображения в модели широкоугольной
изображающей системы [27]:

Ṽ k(ω, ν) = (E + µ(ω, ν) · H̃∗(ω, ν)H̃(ω, ν))−1 · Ṽ k−1(ω, ν)+

+ µ(ω, ν) · (E + µ(ω, ν) · H̃∗(ω, ν)H̃(ω, ν))−1H̃∗(ω, ν)Ũ(ω, ν), k = 1, 2, . . . , (8)

где H̃∗(ω, ν) — сопряжённая к H̃(ω, ν) матрица, E —
единичная матрица, µ(ω, ν) > 0 — параметр итера-

ционного метода; k — номер итерации, Ṽ 0(ω, ν) —
нулевой вектор.

Итерационный метод (8) в сочетании с прави-
лом выбора количества итераций — параметра ре-
гуляризации в зависимости от уровня погрешности
входных данных — задает регуляризирующий опе-
ратор при любом положительном µ(ω, ν) (см., на-
пример, [25], гл. 2, п. 1). При практическом при-
менении итерационного метода (8) важное значе-
ние имеет выбор параметра итерационного метода
µ(ω, ν). Как отмечено в [25], с. 35, этот параметр
влияет на скорость аппроксимации метода. Ясно,
что при выборе общего параметра для всех частот
качество восстановления высокочастотных и низко-
частотных гармоник отличается и не может быть
одновременно хорошим. В связи с этим, а также
имея в виду желание повысить устойчивость мето-
да к влиянию шума, параметр итерационного мето-
да выбирается локальным по частотам в зависимо-
сти от типа шума на изображении.

Вообще говоря, на изображении может присут-
ствовать множество различных шумов в зависимо-
сти от условий съёмки: гауссов шум, пуассоновский
шум, импульсный шум [28] и т.д. В настоящей
работе предполагается, что основное инвазивное
влияние на качество получаемого изображения
оказывает пуассоновский шум. Отличительной
особенностью такого типа шума является его зави-

симость от регистрируемого сигнала [29]. Поэтому
параметр итерационного метода µ(ω, ν) выбирается
исходя из спектра наблюдаемого изображения.
Поскольку шум в каждом канале согласно (6)
так или иначе смешивается, используется спектр
линейной комбинации каналов наблюдаемого
изображения (см. [30, 31]):

UG(ω, ν) = F(0.299 · u0(x, y)+

+ 0.587 · u1(x, y) + 0.144 · u2(x, y)).

С учётом этого выражение для параметра итераци-
онного метода имеет вид:

µ(ω, ν) = (UM − UE(ω, ν) +m) · s,

где UE(ω, ν) = log(1 + |UG(ω, ν)|
2) — норми-

рованный энергетический спектр UG(ω, ν),
UM = max(ω,ν)∈R2 UE(ω, ν), m — параметр, s —
масштабирующий коэффициент. Параметры m, s
подбираются эмпирически для конкретных классов
изображений.

Поскольку от любых методов, рассчитанных на
применение в медицинских приложениях, требуют
высокую производительность, ожидается, что та-
кие методы имеют либо небольшую вычислитель-
ную сложность, либо широкие возможности по
оптимизации, в том числе с использованием па-
раллельных вычислений. Сам по себе предложен-
ный алгоритм вычислительно сложный. Однако
в каждой точке спектрального пространства (ω, ν)
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фактически независимо от других точек решает-
ся СЛАУ 3 на 3. Таким образом, граф алгорит-
ма предложенного метода представляет собой N2

(N — размер изображения) узлов, в каждом из
которых решается небольшая СЛАУ. Такой алго-
ритм легко переноситься на архитектуру графи-
ческого процессора. Например, разработанная на-
ми реализации предлагаемого метода, работающая
на NVIDIA 3080, восстанавливает изображение раз-
мером 3534x3534 приблизительно за 10.5 с (про-
тив нескольких десятков минут у последовательной
реализации).

2.1. Критерий останова

Остановимся на описании правила останова ите-
рационного алгоритма, т.е. выборе количества ите-
раций метода k0, который является параметром ре-
гуляризации. Различные методы выбора парамет-
ра регуляризации обычно основаны на использо-
вании информации об уровне погрешности вход-
ных данных (см., например, [24], [26], [25] и др.).
Вместе с тем во многих случаях информация об
уровне погрешности недоступна. В таких случа-
ях приходится использовать эмпирические методы,
при формулировке которых требования согласова-
ния параметра регуляризации с погрешностью дан-
ных учитывается опосредованно, на основе анализа
текущих итераций.

В рассматриваемом нами случае на каж-
дой итерации вычисляется норма невязки

F (vk) = ‖Avk − u‖L2
, где vk = F−1(Ṽ k(ω, ν)) —

изображение, полученное на k-й итерации. Да-
лее в диапазоне k ∈ 1, . . . , k1 для некоторого
k1 ∈ N, k1 > 1 по данным вычисленным значени-
ям F (vk) строится нижняя огибающая Fenv(v

k),
k = 1, . . . , k1. Если существует единственный
km = mink∈[1,k1] Fenv(v

k) и km ∈ [1, k1), то k0 = km
и метод завершает свою работу. Иначе вычисления
продолжаются до нахождения такого k0 или до-
стижения заранее заданного максимального числа
итераций.

Наши исследования показали, что описанное вы-
ше правило хоть и является эмпирическим, однако
в случае отсутствия информации об уровне погреш-
ности наблюдений дает вполне адекватные резуль-
таты. С одной стороны, удается скомпенсировать
влияние дефокусировки и связанную с ней хромати-
ческую аберрацию, с другой стороны, значительное
превышение количества выполненных итераций от-
носительно найденного значения k0 приводит к воз-
вращению хроматической аберрации и появлению
заметных хроматических шумов.

На рис. 2 представлены типичные профили F (vk)
и Fenv(v

k), построенные для изображения периоди-
ческих секторов рис. 2, a и фотографии глазного
дна рис. 2, б, которые были получены с помощью
фотокамеры (см. рис. 4, б и 5, б ). Чтобы получить
наглядный график, алгоритм не был остановлен
по нахождению km и выполнял итерации до дости-

жения их заранее заданного максимального числа.
Видно, что нижняя огибающая Fenv(v

k) позволя-
ет однозначно определить km, несмотря на наличие
пуассоновского шума, так как она имеет всего один
глобальный минимум, который легко определяется
в процессе работы алгоритма.

2.2. Восстановление параметра
дефокусировки

При практическом использовании описанного вы-
ше метода нужно иметь в виду, что Hi,j(ω, ν), вооб-
ще говоря, неизвестно и его требуется восстановить
с помощью наблюдаемого изображения в рамках ис-
пользуемой модели. Сделать это можно на основе
развития разработанного нами в [32] алгоритма вос-
становления параметра дефокусировки для случая
монохромных изображений. Для случая многока-
нальных изображений алгоритм состоит из следу-
ющих 6 шагов.

На 1-м шаге вычисляется спектр каждого канала
наблюдаемого изображения, усредненный по углу:

Ua
i (r) = arctg

(
(ki · r + bi) ·

1

2πr

∫ 2π

0

|Ui(r, φ)|dφ

)
,

i = 0, 1, 2, (9)

где ki, bi — параметры.
Далее находятся все локальные минимумы Ua

i (r).
Для этого сначала значения Ua

i (r) в точках мини-
мума приближаются к нулю с помощью нормиров-
ка на нижнюю огибающую Uenv

i (r). В качестве та-
кой огибающей используется граница минимальной
выпуклой оболочки, находящейся «ниже» Ua

i (r).
Нахождение минимальной выпуклой оболочки яв-
ляется стандартной процедурой, реализация кото-
рой имеется во многих стандартных программных
пакетах. В настоящей работе использовался класс
ConvexHull модуля spatial библиотеки scipy языка
Python. Таким образом на 2-м шаге требуется най-
ти Uenv

i (r), i = 0, 1, 2.
На 3-м шаге Ua

i (r) нормируется с использовани-
ем огибающей:

Ui(r) = min
r′∈[0,π]

√
(Ua

i (r)− Uenv
i (r′))2 + (r − r′)2,

i = 0, 1, 2. (10)

На 4-м шаге для Ui(r) находятся точки локально-
го минимума, близкие к 0 при r ∈ [0, r0] (с помощью
r0 фильтруется шум на высоких частотах). В итоге
получается набор координат {r0l1}, l1 = 1, L1. Обо-

значим за {r0l2}a,λ0
набор нулей OTF с параметром

дефокусировки a и некоторым λ0, где l2 = 1, L2.
Первое множество отсортировано в порядке возрас-
тания координаты; второе — по возрастанию пара-
метра дефокусировки и затем также в порядке воз-
растания координаты.
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Рис. 2. Профили F (vk) и Fenv(v
k) для изображения периодических секторов (а) и фотографии глазного дна (б )

На 5-м шаге вычисляется набор координат
{r0l2}a,λ0

по радиальной составляющей действитель-
ной части OTF. Для ускорения вычисления бы-
ла предложена следующая модификация форму-
лы быстрого вычисления радиальной составляю-
щей действительной части OTF из [33]:

Hi(r, a, λ0) =
2∑

j=0

∫

R

Hi,j(r, a, λ, λ0)Si(λ)dλ,

i = 0, 1, 2,

Hi,j(r, a, λ, λ0) =

∫ √

1− r2

π2

0

1

a · (λ− λ0) · r
×

× sin

(
4 · a · (λ− λ0) · r

π
·
(√

1− x2 −
r

π

))
dx.

На последнем 6-м шаге алгоритма параметры a
и λ0 вычисляется путём минимизации следующего
функционала:

F (a, λ0) =
2∑

i=0

(
ξ ·

∑

r∈{r0
l2
}a,λ0

|Hi(r, a, λ0)|+

+ η ·
∑

r∈{r0
l1
}

Ui(r)

)
, (11)

где ξ, η — параметры, значения которых можно под-
бирать эмпирически или использовать машинное
обучение.

3. ТЕСТИРОВАНИЕ АЛГОРИТМА
ВОССТАНОВЛЕНИЯ ИЗОБРАЖЕНИЙ

Таблица 1. Параметры изображающей системы

Изображение Изображение

периодических секторов глазного дна

a 0.004 0.077

λ0 (нм) 505 495

34

5

4
3 1

2

1

2

Рис. 3. Изображающая система для глаза человека
и модельная изображающая система для фотокамеры
Canon 5D Mark III. 1 — фотокамера, 2 — матрица,
3 — собирающая линза, 4 — объект (глаз человека или
экран), 5 — хрусталик человеческого глаза

Таблица 2. Параметры итерационного метода

Изображение Изображение

периодических секторов глазного дна

m 0.15 0.5

s 0.3 0.8

k0 15 50

Вообще говоря, современные линзы позволяют
устранять хроматическую аберрацию за счёт сло-
ёной конструкции с разной оптической силой на
каждом слое, однако хрусталик человеческого гла-
за таким свойством не обладает. Поэтому для мо-
делирования оптических свойств хрусталика была
взята стандартная собирающая линза. Эта линза
устанавливалась на некотором расстоянии от каме-
ры Canon 5D Mark III без объектива и других до-
полнительных линз. Таким образом, свет от объек-
та на пути к матрице камеры проходил только че-
рез собирающую линзу. Наблюдаемое изображение
выводилось на экран компьютера для обеспечения
равномерной освещённости. Размытие достигалось
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а б в

г д е

Рис. 4. Изображения периодических секторов: исходное — а, искажённое — б и восстановленное — в; г, д, е —
увеличение в центре

путём сдвига линзы в сторону фотокамеры. Схема
полученной таким образом изображающей системы
представлена на рис. 3.

В качестве наблюдаемых объектов были ис-
пользованы изображения периодических секторов
(рис. 4, а, г) и фрагмента глазного дна в макуляр-
ной области (рис. 5, а, г). Для каждого из случаев
эмпирически были получены параметры изобража-
ющей системы, представленные в табл. 1 (параметр
дефокусировки a задан в условных единицах). Па-
раметр k0 (количество итераций) итерационного ме-
тода был найден с помощью алгоритма, предложен-
ного в п. 3.1, для заданного набора m и s (также
заданы в условных единицах), подобранного в ходе
экспериментов (см. табл. 2).

Поскольку для формирования изображения ис-
пользовалась одна собирающая линза, обладающая
хроматической аберрацией, даже оптимально сфо-
кусированные относительно зеленого канала изоб-
ражения, (рис. 4, а; 5, а; 4, г; 5, г) демонстрируют
хроматическую аберрацию в виде «радужных» гра-
ниц, так как другие каналы оказываются дефокуси-
рованными. Данный эффект можно визуально уси-
лить, если сместить линзу изображающей системы
ближе к камере, тем самым внося дефокусировку.
Тогда на получаемом изображении (рис. 4, б ; 5, б ;
4, д ; 5, д) хроматическая аберрация становится зна-
чительно заметнее, т.к. появляется общая дефоку-
сировка и можно заметить инверсию интенсивности
(рис. 4, д). При этом на восстановленных изображе-

ниях (рис. 4, в; 5, е; 4, в; 5, е) видно отсутствие этих
эффектов. Так у изображения периодических сек-
торов (рис. 4, в, е) была устранена инверсия в цен-
тре и «радужные» границы. Также на контрастных
участках изображений удалось добиться практиче-
ски полного устранения хроматической аберрации.
На фотографии глазного дна (рис. 5, в, е) видно
увеличение четкости границ сосудов, а также луч-
шую детализация части «утерянных» мелких сосу-
дов. Это представляется важным для улучшения
качества и сроков диагностики как офтальмологи-
ческих заболеваний, так и заболеваний системного
характера (таких как возрастная макулярная деге-
нерация или диабет), требующих получения изобра-
жений глазного дна с максимальным разрешением.

ЗАКЛЮЧЕНИЕ

В настоящей работе рассмотрена обратная зада-
ча восстановления многоканального изображения,
искажённого вследствие дефокусировки и сопут-
ствующей ей хроматической аберрации. Для опи-
сания процесса возникновения таких изображений
была построена математическая модель формиро-
вания многоканального изображения. Для реше-
ния некорректной обратной задачи восстановления
многоканального изображения был разработан ал-
горитм на основе неявного итерационного мето-
да в спектральном пространстве, допускающий эф-
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Рис. 5. Фотографии глазного дна: исходное — а, искажённое — б и восстановленное — в; г, д, е — увеличение в левом
нижнем углу

фективное распараллеливание. Разработанная про-
граммная реализация прошла тестирование на раз-
личных зашумлённых данных, полученных в экс-
периментальной изображающей системе с управля-
емой дефокусировкой. Полученные результаты поз-
воляют судить о высокой эффективности предлага-
емого метода в задаче компенсации дефокусиров-
ки и сопутствующей хроматической аберрации для
многоканальных изображений.

Некоторые результаты настоящей работы были
представлены на Международной научной конфе-

ренции студентов, аспирантов и молодых учёных
«Ломоносов-2025» (см. [34]).

Работа второго автора (раздел 3) выполнена
при поддержке Министерства образования и нау-
ки РФ в рамках реализации программы Москов-
ского центра фундаментальной и прикладной ма-
тематики (соглашение № 075-15-2025-345). Работа
второго и третьего авторов (разделы 1,2,4) выпол-
нены при поддержке программы развития МГУ,
проект № 23 SCH06-20.
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Inverse Problem of Image Recovery in a Multichannel Optical System
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The inverse problem of recovering a multichannel image distorted as a result of defocusing and the associated
chromatic aberration is considered. This problem arises in applied problems of ophthalmology related to
in vivo diagnostics of living structures of the human eye using optical methods. A mathematical model
describing the formation of a multichannel image based on a system of integral equations of convolution
type is proposed. To solve the ill-posed inverse problem of multichannel image recovery, an algorithm based
on a modified implicit iterative Tikhonov regularisation method in combination with a selection rule for a
frequency-localised regularisation parameter and a stopping criterion has been developed. The results of the
software implementation of the proposed method make it possible to evaluate its effectiveness in the inverse
problem of multichannel image recovery, including the case of high-resolution images characteristic of medical
applications.
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