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В данной работе представлена структура Ti/HfOx/TiN, способная переключаться как между
резистивными, так и между емкостными состояниями. По данным импедансной спектроскопии
предположена эквивалентная электрическая цепь, которая объясняет резистивные переключе-
ния ростом филамента в слое оксида гафния и предполагает наличие слоя TiON в приконтакт-
ной области HfOx/TiN, который может объяснить наличие сегнетоэлектрического переключе-
ния емкости. Емкостное окно при переключении емкости составляет 185 пФ, что дает увели-
чение емкости на 75%, а сопротивление при резистивном переключении возрастает в 10 раз.
Эти особенности делают наш образец универсальной структурой, которая может быть как кон-
денсатором, так и резистором с несколькими состояниями. Это позволяет кодировать больше
информации в одной ячейке и создавать более сложные логические элементы. Также может
быть решена проблема паразитных токов, что кардинально улучшает энергоэффективность
и надежность масштабируемых массивов памяти.
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ВВЕДЕНИЕ

В данный момент активно протекает переход
в вычислительных системах от привычной архитек-
туры фон-Неймана к нейроморфным нейронным се-
тям [1], которые работают на тех же принципах, что
и головной мозг человека, состоящий из нейронов
и соединяющих их синапсов. Это позволяет совре-
менным нейронным сетям добиться значительных
успехов в классификации и обработке данных и их
генерации. Воссоздать работу синапса в нейроне
можно с помощью мемристора [2–5]. Это простая
структура металл–диэлектрик–металл, которая мо-
жет менять свое сопротивление между нескольки-
ми значениями благодаря росту и разрушению про-
водящей нити — филамента — под действием внеш-
него напряжения. Эффект резистивного переклю-
чения был обнаружен в различных неорганических
соединениях (TiO2, SiO2, ZnO и т.д. [6–8]), сложных
нанокомпозитах [9], а также в органических поли-
мерах [10, 11].

Кроме того, существуют структуры, обладаю-
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щие емкостным переключением, которые также мо-
гут имитировать работу синапса. Для этого часто
применяются сегнетоэлектрические слои, которые
меняют собственную поляризацию под действием
внешнего электрического поля [12]. В отличие от
мемристоров они не выстраивают филаментов, что
делает их переключения более надежными и энер-
гоэффективными. Материалом, который обладает
обоими видами переключений, является оксид гаф-
ния HfO2. Для образования сегнетоэлектрического
эффекта в HfO2 необходимо, чтобы его кристал-
лическая решетка находилась в полярной ортором-
бической фазе Pca21 [13]. Наличие и стабильность
этой фазы зависит от множества производственных
факторов [14], поэтому ученые все еще в поиске уни-
версальных параметров нанесения сегнетоэлектри-
ческих пленок HfO2.

Обычно у сегнетоэлектриков в отсутствии на-
пряжения емкость в разных состояниях одинако-
ва. Для энергоэффективности чтение производит-
ся при малых напряжениях, поэтому важно иметь
емкостное окно даже при 0 В. Этого можно добить-
ся несколькими способами: выбрать для структуры
металлические контакты с разной работой выхода,
что создаст различие во внутреннем поле и, как
следствие, сместит график емкости по напряжению
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[12, 15] или, как продемонстрировал Луо и др. [16],
дефекты вакансий кислорода на нижнем интерфей-
се электрода TiN могут вызывать закрепление до-
менных стенок, и тоже соответствующим образом
смещать график по напряжению даже при одинако-
вых контактах. В дополнение к перечисленным осо-
бенностям, HfO2 совместим с КМОП-технологиями
[17, 18], обладает высокой диэлектрической прони-
цаемостью k ∼ 20 [19, 20], а также не теряет своих
свойств даже при уменьшении толщины до десятка
нанометров [13, 21].

В данной работе изучается структура
Ti/HfOx/TiN, в которой сегнетоэлектрический
слой оксида гафния получен методом магнетронно-
го распыления. Проведен анализ вольт-фарадных
и вольт-амперных характеристик, который показы-
вает возможность наших структур переключаться
как между емкостными, так и между рези-
стивными состояниями. Этот факт делает их
универсальными кандидатами для построения ней-
ронных сетей как на основе мемристоров, так и на
основе мемконденсаторов. Кроме этого, становится
возможно их применение в системах с переменным
током и комбинацией обоих типов переключения
для тонкой настройки при работе со сложными
нейронными сетями.

1. МЕТОДИКА ЭКСПЕРИМЕНТА

Исследованные в работе структуры Ti/HfOx/TiN
были изготовлены на подложках монокристалличе-
ского кремния. Для нанесения слоев нитрида тита-
на и оксида гафния использовалась установка маг-
нетронного распыления УРМ-026. Слой TiN фор-
мировался посредством распыления титановой ми-
шени в аргон-азотной смеси (давление азота 0.3 ×

10
−3 Торр, аргона 2.7 × 10

−3 Торр). Основной ди-
электрический слой HfOx толщиной около 40 нм
создавался распылением гафниевой мишени чисто-
той 99.95% в атмосфере аргон-кислородной смеси
(давление кислорода 2.5×10

−3 Торр, давление арго-
на 0.5× 10

−3 Торр). Верхние титановые электроды
осаждались через теневую маску на системе маг-
нетронного напыления DST3, закупленной в рам-
ках проекта «Наука и университеты» (контракт
№ 1599-44-2024 от 15.11.2024 г.).

Рис. 1. Схематичное изображение структуры
Ti/HfOx/TiN

На рис. 1 схематично изображено устройство
мемконденсатора на основе оксида гафния со струк-
турой Ti/HfOx/TiN.

Вольт-амперные характеристики структур мем-
конденсатора измерялись с помощью установки на
основе источника измерителя Keithley 2401. Изме-
рения вольт-фарадных характеристик на перемен-
ном токе осуществлялись на импеданс анализаторе
HP 4192A при частоте 1 кГц, а измерения частот-
ных зависимостей импеданса проводилась в диапа-
зоне частот от 5 Гц до 13 МГц.

2. РЕЗУЛЬТАТЫ

На рис. 2 изображена вольт-амперная характери-
стика структуры Ti/HfOx/TiN. При обратном про-
ходе, при значении напряжения U = −2.6 В заме-
тен пик, связанный с сегнетоэлектрическим эффек-
том: когда напряжение достигает критического зна-
чения происходит лавинное выстраивание поляри-
зации основного количества доменов по направле-
нию электрического поля. Это и есть момент макси-
мальной скорости изменения поляризации, а вклад
в основной ток со стороны поляризации пропорци-
онален dP/dt, который и регистрируется как пики
на графике вольт-амперной характеристики. Так-
же можно отметить, что в области положительных
значений напряжения данный пик практически не
выражен, что указывает на существование необхо-
димой асимметрии в системе. Наличие тока при ну-
левом смещении является следствием инерционно-
сти процесса переориентации дипольных моментов
в материале.
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Рис. 2. Вольт-амперная характеристика структуры
Ti/HfOx/TiN

Наличие сегнетоэлектрического эффекта позво-
ляет изменять емкость мемконденсатора при при-
ложении электрического напряжения, что и об-
наруживается на вольт-фарадной характеристике
(рис. 3). На графике, измеренном в диапазоне от

2610502–2



ВМУ. Серия 3. ФИЗИКА. АСТРОНОМИЯ. 81(1), 2610502 (2026)

−5 до 5 В при частоте тока 1 кГц, мы видим два
отчетливо различимых состояния емкости, которые
можно воспринимать как Con — высокоемкостное
и Coff — низкоемкостное состояния.
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Рис. 3. Вольт-фарадная характеристика структуры
Ti/HfOx/TiN

Основным параметром, характеризующими пере-
ключение емкости, является емкостное окно — раз-
ность значений емкости в состояниях Con и Coff при
нулевом напряжении и напряжение сдвига, при ко-
тором емкости в этих состояниях выравниваются.
Для исследуемой структуры емкостное окно состав-
ляет 185 пФ, а напряжение сдвига — около −3.5 В.
Обычно изменение емкости в подобных системах
связывают с резким изменением диэлектрической
проницаемости (ε) слоя HfOx при достижении коэр-
цитивного поля, когда происходит коллективное пе-
реключение сегнетоэлектрических доменов. В раз-
личные моменты времени и при разных приложен-
ных напряжениях материал демонстрирует различ-
ную чувствительность к изменению электрического
поля, что приводит к наблюдаемому изменению ем-
кости.

Асимметрия C–V-характеристик обусловлена за-
креплением доменных стенок на дефектах V2+

o

в приконтактном слое TiON, а также наличием
встроенного потенциала, возникающего из-за раз-
ницы работ выхода металлических электродов. При
квазистатическом измерении тока двухпиковое уве-
личение емкости связано с переворотом доменов;
при этом более высокий пик на обратном ходе, по
сравнению с прямым, объясняется тем, что домены,
зафиксированные в поляризации «вверх», индуци-
руют больше доменных стенок, когда обратная на-
пряжённость поля стремится переключить их вниз
[16, 22].

Кроме емкостного переключения, в исследован-
ных структурах был обнаружен эффект резистив-
ного переключения (рис. 4). Сначала образец, име-
ющий сопротивление порядка 1 ГОм, претерпева-
ет процесс формовки филамента при 10.5 В, пе-
реходя в низкорезистивное состояние Roff с сопро-

тивлением 10 кОм. После формовки образец пере-
ключается при значительно меньшем напряжении,
равном 2 В, между высокорезистивным состоянием
Ron = 100 кОм и низкорезистивным Roff = 10 кОм.
Этот эффект объясняется тем, что для формирова-
ния основного филамента необходимо большое на-
пряжение, последующая подача небольшого отри-
цательного напряжения не будет убирать филамент
полностью, лишь размыкая его. Поэтому переход
между Ron и Roff может происходить при значи-
тельно меньших напряжениях, делая наш образец
в разы энергоэффективнее.

  
  

Рис. 4. Вольт-амперные характеристики структуры
Ti/HfOx/TiN до и после формовки филамента

В дополнение к этому были измерены годографы
импеданса, то есть зависимость мнимой части им-
педанса ImZ от действительной его части ReZ до
и после процесса формовки филамента (рис. 5). До
формовки график выглядит как полуокружность
с центром на горизонтальной оси и вертикальная
линия, а после формирования вертикальная линия
также превращается в полуокружность. Предполо-
жена эквивалентная цепь, позволяющая аппрокси-
мировать данные зависимости (рис. 6). В случае
до формирования филамента получаем, что меж-
ду контактами находится два последовательно со-
единенных высокоомных слоя, описываемых парал-
лельной RC-цепочкой; примечательно, что при рас-
смотрении подобной структуры, но с золотым ниж-
ним контактом, второй полуокружности не наблю-
далось [3]. После формирования филамента пара-
метры первого из слоев не меняются, в то время
как на втором сопротивление сильно уменьшается,
что может быть объяснено параллельным подклю-
чением филамента к этому слою; значения всех па-
раметров записаны в таблице. Таким образом, мож-
но предположить, что первый неактивный слой —
приконтактный слой TiON, образующийся при на-
несении гафния в среде кислорода на нижний кон-
такт TiN, а второй — активный слой оксида гаф-
ния, в котором вырастает филамент.
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Рис. 5. Годографы структуры Ti/HfOx/TiN: а — до и б — после процесса формовки филамента

Таблица. Значения параметров эквивалентной электрической цепи структуры Ti/HfOx/TiN до и после процесса
формовки филамента

Rk RTiON CTiON RHfOx
CHfOx

Rf

До формовки 50 Ом 43 кОм 230 пФ 18 МОм 1.1 пФ –

После формовки 50 Ом 43 кОм 230 пФ 18 МОм 1.1 пФ 13 кОм

Рис. 6. Эквивалентные структуры Ti/HfOx/TiN: а — до
и б — после процесса формовки филамента

ЗАКЛЮЧЕНИЕ

В данной работе были изучены структуры
Ti/HfOx/TiN, в которой активный слой сегнето-
электрического оксида гафния был получен мето-
дом магнетронного распыления мишени Hf. Полу-
ченные данные демонстрируют наличие как мемри-

стивных, так и мемконденсаторных переключений.
При переключениях емкости на переменном токе
с частотой 1 кГц емкостное окно составляло 185 пФ,
что дает увеличение на 75% по сравнению с перво-
начальным состоянием. Для резистивных переклю-
чений понадобился процесс формовки филамента
при 10.5 В, после которого структура обладает дву-
мя резистивными состояниями 100 кОм и 10 кОм,
переход между которыми происходит при напряже-
нии 2 В. Данные годографов позволили составить
эквивалентную цепь структуры, обнаруживающую
наличие неактивного слоя, последовательно соеди-
ненного с активным слоем HfOx. Этот неактивный
слой может быть приконтактным слоя TiON, ко-
торый и влияет на наличие сегнетоэлектрическо-
го эффекта в HfO2. Таким образом, наши струк-
туры являются универсальными кандидатами для
построения нейронных сетей как на основе мемри-
сторов, так и на основе мемконденсаторов. Кроме
этого, становится возможно их применение в систе-
мах с переменным током и комбинацией обоих ти-
пов переключения для тонкой настройки при рабо-
те со сложными нейронными сетями.
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This paper presents a Ti/HfOx/TiN structure capable of switching between both resistive and capacitive
states. Impedance spectroscopy data suggest an equivalent electrical circuit that explains the resistive
switching by the growth of a filament in the hafnium oxide layer and suggests the presence of a TiON layer
in the HfOx/TiN contact region, which may explain the ferroelectric capacitance switching. The capacitive
switching window is 185 pF, resulting in a 75% increase in capacitance, while the resistance during resistive
switching increases tenfold. These features represent an example of a versatile structure that can function as
both a capacitor and a multi-state resistor. This enables encoding more information in a single cell and the
creation of more complex logic elements. The problem of parasitic currents can also be solved, dramatically
improving the energy efficiency and reliability of scalable memory arrays.
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