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Проведено вычисление статической части аксионоподобного поля, создаваемого вращающей-
ся нейтронной звездой: пульсара или магнетара. Показано, что это статическое поле распре-
делено анизотропно вокруг звезды, образуя дилатонное гало. Сделан вывод, что для электро-
магнитных волн это гало будет служить анизотропной линзой.
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ВВЕДЕНИЕ

В настоящее время в научной литературе актив-
но исследуются объекты теоретической и математи-
ческой физики, находящиеся за рамками Стандарт-
ной Модели. Cвязано это с развитием идей о суще-
ствовании голдстоуновских бозонов и выделением
на этой основе целого класса новых частиц: дилато-
нов [1–8], арионов [9–12] и аксионов [13–15]. Объеди-
нение данных частиц в один класс — аксионо-подоб-
ных частиц — связано со схожестью их функций
Лагранжа и каналами их рождения через электро-
магнитные поля и волны.

Дилатон в физике высоких энергий [1, 2] опи-
сывается скалярным полем Ψ. Плотность функции
Лагранжа дилатонного поля, взаимодействующе-
го с электромагнитным полем Fik, в пространстве
Минковского имеет вид:

L =
1

2
gik

∂Ψ

∂xi
∂Ψ

∂xk
− g(ψγ)ΨFikF

ik−

− 1

16π
FikF

ik − 1

c
jnAn, (1)

где g(ψγ) — константа связи электромагнитного
и дилатонного полей.

Уравнение дилатонного поля, получаемое из
плотности функции Лагранжа (1), имеет вид:

�Ψ = g(ψγ)FikF
ik = 2g(ψγ)[B

2 −E2], (2)

где � = ∆− ∂2/(c∂t)2 — оператор д’Аламбера.
Согласно уравнению (2), электромагнитные

источники аксионоподобных полей обращаются
в нуль, если векторы E и B равны по величине
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|B| = |E| или если векторы E и B ортогональны
друг другу. Так как таким соотношениям удо-
влетворяет электромагнитная волна в волновой
зоне, то излучение аксионоподобных полей может
происходить из ближней зоны, где |B| 6= |E| или
(E ·B) 6= 0.

В настоящей работе гравитационное поле ней-
тронной звезды не учитывается, что является
оправданным приближением для электромагнит-
ных процессов в ближней зоне. Как показано в ра-
боте [3], учет гравитационного поля в первом поряд-
ке величины rg/RS ≪ 1 (где rg = 2GM/c2 — гра-
витационный радиус звезды, RS — её физический
радиус) приводит к поправкам, не превышающим
нескольких процентов в интенсивности генерации
дилатонов, что существенно меньше других факто-
ров, учитываемых в данной модели.

В рамках модели (1) масса дилатона полагается
равной нулю и ожидаемые поля должны иметь бес-
конечный радиус действия.

Для оценки применимости безмассового прибли-
жения в случае возможной малой массы частицы
аксионоподобной частицы m, рассмотрим характер-
ный пространственный масштаб системы — радиус
светового цилиндра RLC = c/Ω. Для самого быст-
ровращающегося пульсара PSR J1748-2446ad с пе-
риодом P = 1.396 мс [16] RLC ≈ 7×106 см. Условие
сохранения структуры гало имеет вид λ ≫ RLC ,
где λ = ~/(mc) — комптоновская длина волны ча-
стицы.

Это дает верхний предел на массу аксионоподоб-
ной частицы:

m ≪ ~

cRLC
≈ 3× 10−12 эВ.

Таким образом, для частиц с массами
m ≪ 10−11 эВ статическое дилатонное поле бу-
дет сохранять степенную асимптотику вплоть до
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радиуса светового цилиндра. Для более тяжелых
частиц поле будет экспоненциально затухать на
расстояниях r > λ.

Проведенные в научной литературе [2–15, 17] ис-
следования позволили установить спектральный со-
став и диаграммы направленности излучения ак-
сионоподобных частиц, возникающих в различных
конфигурациях электромагнитных полей и волн.
Однако в этих исследованиях полностью игнори-
ровались статические поля этих частиц. Поэтому
возникает необходимость изучить статические ча-
сти аксионоподобных полей, возникающих в элек-
тромагнитном поле пульсарного или магнетарного
излучения и исследовать распределение плотности
энергии этой части в пространстве.

Решению этой задачи и посвящена данная
статья.

1. ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ
ВРАЩАЮЩЕГОСЯ МАГНИТНОГО

ДИПОЛЬНОГО МОМЕНТА НЕЙТРОННОЙ
ЗВЕЗДЫ

Уравнения для потенциалов электромагнитного
поля, как известно [18], имеют вид:

∆ A− 1

c2
∂2A

∂t2
= −4π

c
j, (3)

∆ ϕ− 1

c2
∂2ϕ

∂t2
= −4πρ.

При решении уравнений (3) для потенциалов
электромагнитного поля используются стандарт-
ные граничные условия: ограниченность поля внут-
ри источника и условие излучения Зоммерфельда
на бесконечности для переменной части потенциа-
ла, а также убывание статической части потенциа-
ла на бесконечности.

Плотность 4-вектора тока пульсаров и магнета-
ров jn = {j0 = cρ, j}, создающая их магнитоди-
польное излучение, может быть сосредоточена как
внутри нейтронной звезды, так и на ее поверхно-
сти. Так как в нашей задаче основной интерес пред-
ставляет не 4-вектор jn, а создаваемое им магни-
тодипольное излучение вне звезды, то для просто-
ты будем считать, что магнитодипольное излуче-
ние пульсаров и магнетаров создается вращающим-
ся витком поверхностного тока. Для удобства даль-
нейших вычислений вектор j запишем в комплекс-
ном виде, а после решения задачи возьмем только
реальную часть.

Будем считать, что ток, создающий магнитный
дипольный момент звезды, сосредоточен внутри
звезды с радиусом Rs, а вектор плотности тока

определяется выражением:

j(r, t) = ξ[N(t), r]f(r), (4)

где N(t) = {sin θ0 exp(iΩt),−i sin θ0 exp(iΩt), cos θ0}
— единичный вектор, задающий направление век-
тора магнитного дипольного момента звезды в дан-
ный момент времени, коэффициет ξ задает силу то-
ка в витке, а f(r) 6= 0 при r ≤ Rs и f(r) = 0 при
r > Rs — функция, описывающая распределение
токов как по поверхности, так и внутри звезды.

Плотность электрического заряда ρ(r, t) нейтрон-
ной звезды в рассматриваемом случае в силу диф-
ференциального закона сохранения заряда

∂ρ

∂t
+ div j(r, t) = 0

равна нулю: ρ = 0.
Поэтому уравнение для векторного потенциала

(3) примет вид:

∆ A− 1

c2
∂2A

∂t2
= −4π

c
ξ[N(t), r]f(r).

Скалярный потенциал электромагнитного поля
пульсара или магнетара из-за того, что ρ = 0, так-
же будет равен нулю.

Так как плотность тока (4) содержит зависящую
от времени

jalt(r, t) = ξ sin θ0f(r)×
× eikct

[

(y + ix)ez − z(iex + ey)
]

, (5)

где k = Ω/c, и не зависящую от времени

jperm(r) = −ξ cos θ0f(r)
[

yex − xey
]

части, то и векторный потенциал будет содержать
такие же части: A = Aalt+a, где Aalt — зависящая
от времени часть, а a — статическая часть вектор-
ного потенциала.

Для статической части векторного потенциала
уравнение (5) принимает вид:

∆ a =
4π

c
ξ cos θ0f(r)

[

yex − xey
]

. (6)

Решение этого уравнения будем искать в виде:

a =
4π

c
ξ cos θ0U(r)

[

yex − xey
]

r
. (7)

Подставляя выражение (7) в уравнение (6), найдем
уравнение для функции U(r):

d2U(r)

dr2
+

2

r

dU(r)

dr
− 2

r2
U(r) = rf(r). (8)

Фундаментальная система решений однородного
уравнения (при f(r) = 0) состоит из двух функций
ϕ1(r) = 1/r2 и ϕ2(r) = r. Поэтому решение неодно-
родного уравнения (8) можно записать в виде:
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U(r) = ϕ1(r)

r
∫

Rs

ϕ2(r
′)r′f(r′)

W (r′)
dr′ + ϕ2(r)

∞
∫

r

ϕ1(r
′)r′f(r′)

W (r′)
dr′,

где

W (r′) = ϕ2(r
′)df(ϕ1(r

′))/dr′ − ϕ1(r
′)df(ϕ2(r

′))/dr′ = −3/r′2 — Вронскиан.

Поэтому статическая часть векторного потенциала a принимает вид:

a = −4πξ

3c
cos θ0(yex − xey)

{ 1

r3

r
∫

Rs

r′4f(r′)dr′ +

∞
∫

r

r′f(r′)dr′
}

. (9)

В случае поверхностного тока f(r′) = δ(r′ −Rs) выражение (9) значительно упрощается:

a = −4πξR4
s

3r3c
cos θ0(yex − xey).

Вектор индукции статического магнитного поля имеет вид:

B = rot a =
4πξR4

s

r5c
cosθ0

[

z(xex + yey) + (2z2 − x2 − y2)ez

]

. (10)

Выразим теперь константу ξ через максимальное значение модуля вектора B на поверхности [19] ней-
тронной звезды: ξ = cBs/(2πRs cos θ0). В случае поверхностного тока f(r′) = δ(r′ − Rs) выражение (9)
значительно упрощается:

a = −4πξR4
s

3r3c
cos θ0(yex − xey).

Уравнение для зависящей от времени части векторного потенциала электромагнитного поля пульсара
Aalt имеет вид:

∆ Aalt −
1

c2
∂2Aalt

∂t2
= −4πξ

c
sin θ0f(r)e

ikct
[

(y + ix)ez − z(iex + ey)
]

. (11)

Решение уравнения (11) будем искать в виде запаздывающего потенциала:

Aalt(r, t) =
ξ

c
sin θ0e

ikct

∫

V

dV ′

|r− r′|e
−ik|r−r

′|
[

(y′ + ix′)ez − z′(iex + ey)
]

f(r′). (12)

Согласно теореме Гегенбауэра [20, 21] при r > r′ справедливо следующее разложение по системе сфериче-
ских функций:

exp{−ik|r− r′|}
|r− r′| = − πi

2
√
rr′

∞
∑

n=0

(2n+ 1)Jn+1/2(kr
′)H

(2)
n+1/2(kr)Pn(cos γ),

где H
(2)
n+1/2(kr

′) — функция Ханкеля второго рода, Jn+1/2(kr) — функция Бесселя, Pn(z) — полином Ле-

жандра, cos γ — косинус угла между векторами r и r′.
При r < r′ это разложение принимает вид:

exp{−ik|r− r′|}
|r− r′| = − πi

2
√
rr′

∞
∑

n=0

(2n+ 1)Jn+1/2(kr)H
(2)
n+1/2(kr

′)Pn(cos γ).

Поэтому запаздывающее решение неоднородного уравнения (12) можно записать в виде:

Aalt(r, t) = − πiξ

2c
√
r
sin θ0e

ikct
∞
∑

n=0

(2n+ 1)

∫ π

0

sin θ′
∫ 2π

0

dϕ′Pn(cos γ)
[

sin θ′(sinϕ′ + i cosϕ′)ez − cos θ′(iex + ey)
]

×

×
{

H
(2)
n+1/2(kr)

∫ r

Rs

r′5/2Jn+1/2(kr
′)f(r′)dr′ + Jn+1/2(kr)

∫ ∞

r

r′5/2H
(2)
n+1/2(kr

′)f(r′)dr′

}

.

(13)
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Учтем теперь, что, согласно [22],
[

sin θ′(sinϕ′ + i cosϕ′)ez − cos θ′(iex + ey)
]

=
[

− P 1
1 (cos θ

′)(sinϕ′ + i cosϕ′)ez − P1(cos θ
′)(iex + ey)

]

и используем известное [23] разложение:

Pn(cos γ) = Pn(cos θ)Pn(cos θ
′) + 2

n
∑

m=1

(n−m)!

(n+m)!
Pmn (cos θ)Pmn (cos θ′) cosm(ϕ′ − ϕ).

Тогда, после интегрирования выражения (13) по углам θ′ и ϕ′ получим:

Aalt(r, t) = −2π2iξ

c
√
r

sin θ0e
ikct

[

sin θ(sinϕ+ i cosϕ)ez − cos θ(iex + ey)
]

×

×
{

H
(2)
3/2(kr)

r
∫

Rs

r′5/2J3/2(kr
′)f(r′)dr′ + J3/2(kr)

∞
∫

r

r′5/2H
(2)
3/2(kr

′)f(r′)dr′
}

.

Выражения для потенциалов a и Aalt(r, t) электромагнитного поля, создаваемого вращающимся витком
тока, значительно упрощаются, если ток является поверхностным: f(r′) = δ(r′−Rs). В этом случае решение
уравнения можно записать в виде:

A = −2π2iξ

c
√
r3

sin θ0e
ikctH

(2)
3/2(kr)

[

(y + ix)ez − z(iex + ey)
]

R5/2
s J3/2(kRs)−

4πξR4
s

3r3c
cos θ0(yex − xey).

Оставим только реальную часть от этого выражения. Учитывая, что

ieikctH
(2)
3/2(kr) = i

√

2

πkr

(

i

kr
− 1

)

eik(ct−r) =

= −
√

2

πkr

{[

cos k(ct− r)

kr
− sin k(ct− r)

]

+ i

[

sink(ct− r)

kr
+ cos k(ct− r)

]}

,

в результате получим:

A =
2ξR

5/2
s J3/2(kRs)

cr2

√

2π3

k
sin θ0

{[cos k(ct− r)

kr
− sin k(ct− r)

]

(yez − zey)+

+
[ sin k(ct− r)

kr
+ cos k(ct− r)

]

(zex − xez)
}

− 4πξR4
s

3r3c
cos θ0(yex − xey).

Используя это соотношение, найдем напряженность электрического поля E и индукцию магнитного поля
B, создаваемых вращающимся витком поверхностного тока:

E =
2ξR

5/2
s J3/2(kRs)

cr2

√
2π3k sin θ0

{[

cos k(ct− r) +
sin k(ct− r)

kr

]

(yez − zey)+

+
[

sink(ct− r)− cos k(ct− r)

kr

]

(zex − xez)
}

,

B =
2ξ

r5

√

2π3R5
s

k3
J3/2(kRs) sin θ0×

×
{[

(

r2k2xy − kr3 + 3krx2 − 3xy
)

sin k(ct− r) +
(

k2r4 − k2r2x2 − r2 + 3krxy + 3x2
)

cos k(ct− r)

]

ex+

+

[

(

r2k2y2 − k2r4 + r2 + 3rkxy − 3y2
)

sin k(ct− r) +
(

3(ky2r + xy)− kr3 − r2k2xy
)

cos k(ct− r)

]

ey+

+

[

(

r2k2yz + 3rkxz − 3yz
)

sink(ct− r) +
(

3rkyz + 3xz − r2k2xz
)

cos k(ct− r)

]

ez

}

+

+
4πξR4

s

r5c
cos θ0

[

z(xex + yey) + (2z2 − x2 − y2)ez

]

. (14)
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2. СТАТИЧЕСКОЕ ДИЛАТОННОЕ ПОЛЕ,
СОЗДАВАЕМОЕ ЭЛЕКТРОМАГНИТНЫМ
ПОЛЕМ ПУЛЬСАРА ИЛИ МАГНЕТАРА

Используя выражения (14), построим статиче-
скую часть источника, стоящего в правой части
уравнения (2):

g(ψγ)(FikF
ik)stat = 2g(ψγ)([B

2 −E2])stat =

=
g(ψγ)

k2r8

{

α2[2k2r4 − 6k2z2r2 + 5r2 − 3z2]+

+ 2α2
1k

2[r2 + 3z2]
}

,

где для сокращения записи коэффициентов введе-
ны обозначения:

α = 2ξJ3/2(kRs)
√

(
2π3R5

s

kc2
) sin θ0,

α1 = −4πR4
s cos θ0
3c

.

Тогда уравнение (2) для статического поля Ψ при-
мет вид

∆Ψ =
g(ψγ)

k2r8

{

α2[2k2r4 − 6k2z2r2 + 5r2 − 3z2]+

+ 2α2
1k

2[r2 + 3z2]
}

.

Частное решение этого уравнения вне нейтрон-
ной звезды (при r > RS) имеет вид

Ψ =
g(ψγ)
k2

×

×
{ α2

2k2r6

[

r2 − z2 + 3k2r2z2 − k2r4
]

+
α2
1z

2

r6

}

.

(15)

Это выражение описывает распределение ста-
тического дилатонного поля вокруг пульсара
или магнетара.

ЗАКЛЮЧЕНИЕ

Проведенное исследование показало, что электро-
магнитное излучение пульсаров и магнетаров не
только производит генерацию дилатонов на двой-
ной частоте их вращения, но и создает вокруг них
статическое дилатонное поле, образуя некоторое га-
ло. Так как выражение (15) не является сферически
симметричным, то для электромагнитных волн это
гало служит анизотропной линзой.

Все формулы в этой статье проверены с исполь-
зованием компьютерной алгебры REDUCE.

Данное исследование выполнено в рамках на-
учной программы Национального центра физики
и математики, секция №5 «Физика частиц и кос-
мология». Этап 2023–2025 гг.
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The static component of the axion-like field generated by a rotating neutron star — a pulsar or a magnetar —
has been calculated. It is shown that this static field is distributed anisotropically around the star, forming a
dilatonic halo. It is concluded that for electromagnetic waves, this halo will act as an anisotropic lens.
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