приближением Ферми—Сегре для определения электронной плотности 5s-электронов на ядрах сурьмы: $\psi_{5s}^2(0)=1,56\cdot 10^{26}$ cм $^{-3}$ и константой, равной $1,08\cdot 10^{-22}$, получаем значение изменения зарядового радиуса ядра при переходе из возбужденного состояния в основное

$$\left(\frac{\Delta R}{R}\right)_{121_{\text{Sb}}} = -(4.3 \pm 0.7) \cdot 10^{-4}.$$

значение хорошо согласуется с имеющимися в литературе Полученное [5, 13, 14].

ЛИТЕРАТУРА

- 1. Lees J. K., Flinn P. A. «J. Chem. Phys.», 48, 882, 1968.
- 2. Uher R. A., Sorensen R. A. «Nucl. Phys.», 86, 1966. 3. A. J. F. Boyle. Proc. Intern. Konf. Mossb. Eff., 267, 1961.
- 4. Bocque J. F. «Phys. Rev.», 17, 809, 1966.
- 5. Ruby S. L., Kalvins J. H., Beard F. B., Snyder R. E. «Phys. Rev.», 159, 239, 1967.
- 6. Boyle A. J. F. «Proc. Phys. Rev.», A79, 416, 1962.
- 7. Брюханов В. А. и др. ЖЭТФ, 53, 5, 1967.
- 8. Юм-Розери В., Рейнер Г. Структура металлов и сплавов. М., ИЛ, 1959. 9. Кузьмин Р. Н., Никитина С. В., Херкнер О. «Вестн. Моск. ун-та», физ., астрон., № 5, 1969. 10. Mott H. F., Jones H. The Theory of the Properities of Metals and allays. Ox-
- ford., 1945.
- 11. Fermi E., Segre E. «J. Phys.», 82, 729, 1933.
- 12. Воуlе А. J. F., Випьигу D. S. P. «Proc. Phys. Soc.», (1)79, 416, 1962. 13. Шпинель В. С., Брюханов В. А. Сообщения фарадеевского общества. Мессбауэровский симпозиум 1967.
- 14. Иофа В. З., Семенов С. И., Шпинель В. С. ЖЭТФ, 83, 1, 1968.

Поступила в редакцию 15.9 1971 г.

Кафедра физики твердого тела

УДК 538.213

В. Г. СУХАРЕВСКИЙ, В. К. ГРИШИН, В. А. ВОРОНОВ

импульсная проницаемость некоторых ФЕРРИТОВ В ОБЛАСТИ СИЛЬНЫХ ПОЛЕЙ

В настоящее время в импульсной технике используются все более короткие импульсы длительностью до нескольких наносекунд. Однако данные по измерению магнитной проницаемости ферритов, используемых, например, в качестве сердечников импульсных трансформаторов, при длительности намагничивающих импульсов менее 0,1 мксек в сильных полях (десятки эрстед) в литературе отсутствуют. В данной работе проведены измерения зависимости импульсной проницаемости от величины намагничивающего поля при нескольких длительностях намагничивающих импульсов для десяти типовых марок ферритов: 300-ННИІ, 700-НМ, 1000-ННИ, 1000-НМЗ, 1500-НМЗ, 2000-НМЗ, 2000-НМІ, 2500-НМС, 4000-НМ и 6000-НМІ. Импульсы напряжения длительностью 20, 50, 100, 200 и 300 исек имели форму однополярных прямоугольных импульсов, задний фронт которых представлял собой серию затухающих колебаний (рис. 1). Передний фронт основных импульсов не превышал 5÷7 нсек, задний - $7 \div 10$ исек. Импульсная проницаемость рассчитывалась по формуле $\mu_{\tt H} = B_m/H_{\tt H} [\it{cc/s}]$, где B_m — максимальное значение достигнутой индукции в образце, H_{π} — импульсная напряженность поля. Благодаря затухающим колебаниям каждый импульс намагничивал образец при начальной индукции, близкой к нулю; мощность в импульсе достигала 100 $\kappa s \tau$. Напряженность магнитного поля изменялась в диапазоне 2,5 \div 125 \circ (200 \div 10000 a/m). Импульсы формировались специальным генератором, являющимся модификацией импульсного генератора 1.

¹ О. С. Колотов, В. А. Погожев, Р. В. Телеснин. Методы и аппаратура для исследований импульсных свойств тонких магнитных пленок. Изд-во МГУ, 1970.

Данные, полученные в результате измерений для некоторых из перечисленных типов ферритов, приведены в таблице.

	Длительность мпульсов, <i>нсек</i>		50	100	200	300	20	50	100	200	300	20	50	100	200	300
	Н, эрст	300-ННИ1					2000-HM3					4000-HM				
Магнитная проницаемость, ec/эрст	2,5	100	216	250	334	452	391	418	668	832	1000	400	500	616	833	1075
	5	83	133	175	234	275	329	251	361	500	625	250	334	375	458	563
	7,5	67	111	155	178	200	167	185	250	361	500	188	236	266	334	417
	12,5	53	87	110	134	150	112	128	167	250	325	120	150	166	217	278
	25	33	46	63	83	95	60	78	89	142	175	70	83	92	117	150
	37,5	24	33	45	60	73	41	58	63	106	127	49	58	67	83	109
	50	20	29	37	50	62	32	45	50	84	100	38	46	54	67	88
	62,5	18	27	33	43	58	27	37	45	73	85	32	39	47	60	75
	.75	16	23	31	39	53	23	31	39	67	75	29	35	42	53	67
	87,5	14	21	29	35	50	21	27	37	63	73	26	34	40	51	64
	100	13	19	27	34	49	18	24	32	56	63	23	29	35	46	63
	125	12	18	26	33	48	15	20	28	52	60	19	27	30	40	61

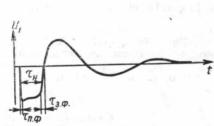


Рис. 1. Намагничивающий импульс напряжения

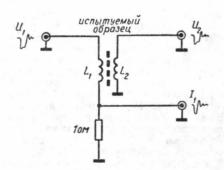


Рис. 3. Схема измерений

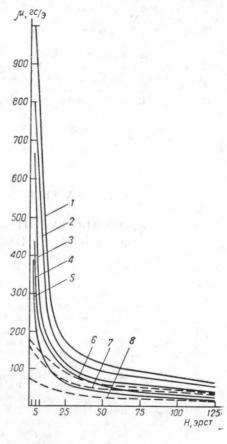


Рис. 2. Зависимость импульсной магнитной проницаемости от напряженности намагничивающего поля для образцов феррита 2000-НМЗ (сплошная) и холоднокатаной стали 9-340 (пунктир). I и 6-300, 2 и 7-200, 3 и 8-100, 4-50, 5-20 исек.

Характер зависимости импульсной проницаемости от напряженности магнитного поля для всех испытанных марок ферритов приблизительно одинаков. В качестве примера на рис. 2 изображена зависимость магнитной проницаемости от напряженности поля для образца феррита 2000-НМЗ типоразмера $20\cdot12\cdot6$. Была также измерена зависимость импульсной проницаемости от напряженности намагничивающего поля для образца холоднокатаной стали $3\cdot340$ (толщина ленты 80 мкм), которая приведена на рис. 2. Измерения проводились по схеме, изображенной на рис. 3 и сводились к осциллографированию импульсов тока в первичной обмотке (I_1) и напряжения во вторичной обмотке (U_2) образца на двухлучевом импульсном широкополосном осциллографе. Относительная ошибка измерений при длительности намагничивающих импульсов 20 неек составила 15%, при длительности 50-300 неек — 10%. Существенный вклад в ошибку вносит погрешность измерения геометрических размеров образца (около 5%).

Поступила в редакцию 8.12 1971 г.

ФКИИН

УДК 539.186

Б. Я. ЮРКОВ

ИОНИЗАЦИОННЫЕ ПОТЕРИ ЭНЕРГИИ ТЯЖЕЛЫМИ ЗАРЯЖЕННЫМИ ЧАСТИЦАМИ

Как известно [1], расчет по формуле Бете средних ионизационных потерь энергии проникающими в вещество тяжелыми заряженными частицами, в частности протонами, в области малых энергий либо приводит к большим ошибкам, либо (для тяжелых веществ) становится совсем невозможным. Непригодной оказывается и формула Бора, хотя последняя получена в противоположном приближении малых скоростей проникающей частицы v_p в сравнении со «средней скоростью» электронов в атоме. В связи с этим рассмотрим более детально формулу Блоха, которая совмещает формулы Бете и Бора. Проведенный анализ двух работ Блоха [2 и 3] показывает, что исходные равенства (формулы (20) в [2] и (29) в [3]) получаются одинаковыми оттого, что основные предпосылки обеих работ Блоха в сущности эквивалентны. Это позволяет отказаться от метода Блоха разделения параметра удара на две области и решать сразу всю задачу, не накладывая ограничений на скорость проникающей частицы v_p . В результате под знаком логарифма появляется дополнительный член, и новое выражение для средних ионизационных потерь энергия (в $\mathfrak{s}\mathfrak{s}\mathfrak{c}\mathfrak{c}\mathfrak{m}^2$) получает вид

$$\varepsilon = \frac{4\pi e^4 Z_1^2 Z_2}{m v_p^2} \left\{ \ln \left[\left(\frac{2m_p}{m_p + m} \right) \frac{m v_p^2}{I} + \Gamma \exp \left(-\Psi \left(1 \right) \right) \right] + \Psi \left(1 \right) - \operatorname{Re} \Psi \left(1 + i \Upsilon \right) \right\}, \tag{1}$$

Здесь eZ_1 — заряд проникающей частицы, Z_2 — порядковый номер атома среды; m и m_p — масса электрона и масса проникающей частицы, соответственно, $\mathrm{Re}\Psi$ — действительная часть логарифмической производной Γ -функции, параметр вырождения квантовомеханического движения в классическое

(\hbar — дебройлевская длина волны электрона, имеющего скорость проникающей частицы v_p ; \hbar — постоянная Планка; a_0 — радиус первой боровской орбиты) зависит от принимаемого вида выражения для области соударения a. Расчеты проводились с использованием выражения для величины a, согласно Бору [4]:

$$\Upsilon_B = \left[\frac{m_p}{m} \cdot \frac{Ry}{E_p} \left(Z_1^{2/3} + Z_2^{2/3} \right) \right]^{1/2}$$

(Ry- постоянная Ридберга, E_p- энергия проникающей частицы) и Томпсону [5], когда

$$\Upsilon_T = \left[\frac{m_p}{m} \cdot \frac{Ry}{E_p} (Z_1 \cdot Z_2)^{1/3} \right]^{1/2}.$$