где

$$\beta_0 = (\epsilon_1 \mu_1)^{-\frac{1}{2}}, \quad \beta_\epsilon = \mu_1^{-\frac{1}{2}} (\epsilon_1 \mathring{v}_\parallel^2 + \epsilon_3 \mathring{v}_\perp^2)^{-\frac{1}{2}}, \quad \mathring{v}_\perp = \frac{v_\perp}{v}, \quad \mathring{v}_\parallel = \frac{v_\parallel}{v}.$$

Формула (3) может быть преобразована:

$$W_{\mu} = \frac{e^{2}}{2\pi c^{3}} \int_{0}^{\infty} d\omega \int_{-\sqrt{\varepsilon_{1}\mu_{1}}}^{\sqrt{\varepsilon_{1}\mu_{1}}} ds_{\mu} \int_{-\infty}^{\infty} dx \, \mu_{3} \, (\omega) \, \omega^{2} \, v_{\perp}^{2} \left\{ \cos \widetilde{\omega} \, x - \frac{(\beta_{\parallel} \, \omega s_{\mu} - \omega)^{2}}{\widetilde{\omega}^{2} \, y_{\omega\mu}^{2}} \right\} \times \\ \times J_{0} \left(2y_{\omega\mu} \sin \frac{\widetilde{\omega} \, x}{2} \right). \tag{15}$$

Устремляя $\widetilde{R} o \infty$ и проводя необходимые интеграции, получим

$$W_{\mu} = e^2 v^{-1} c^{-1} \int \mu_1 \beta_0 (\beta \beta_{\mu}^{-1} - 1) \omega d\omega$$
 (16)

при условии (12) и

$$W_{\mu} = e^{2}c^{-2} \int \mu_{1} (\beta_{0}\beta_{\mu}^{-1} - \mathring{v}_{\parallel}) \omega d\omega$$
 (17)

при условии (14).

Здесь
$$\beta_{\mu} = \varepsilon_1^{-\frac{1}{2}} (\mu_1 \mathring{v}_{\parallel}^2 + \mu_3 \mathring{v}_{\perp}^2)^{-\frac{1}{2}}$$
, причем $(\mu_1 \mathring{v}_{\parallel}^2 + \mu_3 \mathring{v}_{\perp}^2) \varepsilon_1 > c^2$.

ЛИТЕРАТУРА

- 1. Куканов А. Б. «Вестн. Моск. ун-та», физ., астрон., 11, № 5, 606, 1971. 2. Миzikar С., Раfотоv V. Е. Czechosl. Journ. Phys., В11, 709, 1961. 3. Куканов А. Б. «Оптика и спектроскопия», 14, вып. 1, 121, 1963. 4. Градштейн И. С., Рыжик И. М. Таблицы интегралов, сумм, рядов и произведений. М., 1971.

Поступила в редакцию 24.5 1972 г.

Кафедра теоретической физики

УДК 539.11

Л. С. КУЗЬМЕНКОВ

О СВЯЗИ ОБЪЕМНЫХ И ПОВЕРХНОСТНЫХ СВОЙСТВ СИСТЕМЫ ЧАСТИЦ В ОКРЕСТНОСТИ ПРОСТРАНСТВЕННО-ВРЕМЕННОЙ ТОЧКИ КРИВОГО ПРОСТРАНСТВА

Аппарат гидродинамики, претендующий на возможность описания Аппарат гидродинамики, претендующий на возможность описания системы многих частиц, связан с ограничением концентрацией «жидкой точки» не нарушающей своей индивидуальности в процессе движения. В данной частице объемные свойства обязаны выражаться через поверхностные, лишь в этом случае можно говорить о зацепляющейся цепочке законов сохранения моментов относительно функции распределения [1]. В изучении указанной сложной проблемы можно выделить три основных вопроса: условия «запутывания» материальных частиц между собой, обеспечивающих правомерность понятия «жидкой точки», выяснение влияния новых факторов на возможность сведения объемных свойств к поверхностным ковариантным образам и выяснение возможности обрыва цепочки для получения замкнутого аппарата. Данная заметка посвящается второму вопросу.

Как следует из [2], процедура усреднения с помощью инвариантной функции распределения f(x, u) нарушает физический смысл величин при переходе к

средним, сохранить схему моментов, аналогичную нерелятивистской [1], можно либо изменением инвариантного элемента объема $d\Omega$ в пространстве скоростей, либо переопределением f(x,u) на основе того, что плотность числа частиц является нулевым компонентом 4-вектора потока частиц M. Полагаем

$$n(x) \langle \ldots \rangle = \int (\ldots) (u^0 f) d\Omega.$$
 (1)

Тогда из уравнения непрерывности для f(x, u), преобразованного к виду

$$u^{\alpha} \frac{\partial (u^{0} f)}{\partial x^{\alpha}} - \left(\Gamma^{k}_{\cdot \beta \gamma} - \frac{u^{k}}{u^{0}} \Gamma^{0}_{\cdot \beta \gamma}\right) u^{\beta} u^{\gamma} \frac{\partial (u^{0} f)}{\partial u^{k}} + \frac{e}{mc^{2}} \left(F^{k}_{\cdot \beta} - \frac{u^{k}}{u^{0}} F^{0}_{\cdot \beta}\right) u^{\beta} \frac{\partial (u^{0} f)}{\partial u^{k}} = \frac{e}{mc^{2}} F^{0}_{\cdot \beta} \frac{u^{\beta}}{u^{0}} (u^{0} f) - \Gamma^{0}_{\cdot \beta \gamma} \frac{u^{\beta} u^{\gamma}}{u^{0}} (u^{0} f),$$

$$(2)$$

путем интегрирования получаем «теорему сохранения» для произвольной физической характеристики частиц $G\left(x,\ v\right),\ \left(v^{0}\equiv c\right)$

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} n(x) \sqrt{-g} \langle v^{\alpha} G \rangle - n(x) \langle v^{\alpha} \frac{\partial G}{\partial x^{\alpha}} \rangle = n(x) \langle F^{k} \frac{\partial G}{\partial v^{k}} \rangle. \tag{3}$$

При G=1 и $G=v^I$ получаем уравнение непрерывности

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} \sqrt{-g} n(x) \vartheta^{\alpha}(x) = 0 \quad (\vartheta^{\alpha}(x) = \langle v^{\alpha} \rangle)$$
 (4)

и уравнение движения континуума

$$\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\alpha}} \sqrt{-g} n(x) \langle v^{\alpha} v^{l} \rangle = n(x) \langle \frac{1}{m} F^{l}(x, v) \rangle, \qquad (5)$$

где

$$\langle F^{I} \rangle = \frac{e}{c} \left\langle \frac{1}{u^{0}} \left(F^{I}_{\cdot \beta} v^{\beta} - \frac{1}{c} F^{0}_{\cdot \beta} v^{\beta} v^{I} \right) \right\rangle -$$

$$- m \left\langle \Gamma^{I}_{\cdot \alpha \beta} v^{\alpha} v^{\beta} - \frac{1}{c} \Gamma^{0}_{\cdot \alpha \beta} v^{\alpha} v^{\beta} v^{I} \right\rangle$$
(6)

есть средняя 3-сила.

Ёсли G равно обобщенному импульсу частиц, то (3) совпадает с законом сохранения тензора частиц

$$\nabla_{\alpha} M^{\alpha}_{\cdot \beta} = \frac{e}{mc^2} F_{\alpha\beta} M^{\alpha}. \tag{7}$$

Таким образом, из (3) следует, что наряду с гидродинамикой, основанной на тензорах M^{α} , $M^{\alpha\beta}$, может быть сохранена теория моментов, аналогичная нерелятивистской, которая, однако, не является ковариантной.

Установим способ построения соответствующих ковариантных величин. Для инвариантной плотности числа частиц n_0 и 4-вектора средней скорости $\tau^{\alpha}(x)$ имеем

$$n(x) = \frac{n_0(x)}{\sqrt{g_{\alpha\beta} \frac{\vartheta^{\alpha}(x) \vartheta^{\beta}(x)}{c^2}}}, \quad \tau^{\sigma}(x) = \frac{\vartheta^{\sigma}(x)}{c \sqrt{g_{\alpha\beta} \frac{\vartheta^{\alpha}(x) \vartheta^{\beta}(x)}{c^2}}}.$$
 (8)

Прежде чем указать ковариантные обобщения моментов произвольного порядка, заметим, что интервал физически бесконечно малого объема должен быть определен формулой

$$d\sigma^{2}(x) = (dx^{0})^{2} \left(g_{\alpha\beta} - \frac{\vartheta^{\alpha}(x) \vartheta^{\beta}(x)}{c^{2}} \right), \tag{9}$$

которую легко доказать из условия, что 3-вектор $\vartheta^{\alpha}(x)$ и 4-вектор $\tau^{\alpha}(x)$ определяют одни и те же линии тока. Поэтому из $d\sigma =$ inv вытекает инвариантность отношений u_0/τ_0 , u°/τ° , так, что

$$n_0(x) = \int u^0/\tau^0 f d\Omega = \int u_0/\tau_0 f d\Omega = \int u_\alpha \tau^\alpha f d\Omega.$$
 (10)

Мы видим, что «собственное время» физически бесконечно малой частицы $d\sigma$ отлично от «собственного времени» материальных частиц, а его инвариантность физически эквивалентна требованию, чтобы плотность числа частиц была нулевым компонентом 4-вектора.

Полученных инвариантных соотношений достаточно, чтобы утверждать, что компоненты $(\tau^0)^r < v^{k_1} v^{k_2} \dots v^{k_r} >$ являются пространственными составляющими

4-тензора ранга r.

Выделение трансляционных членов в нерелятивистской теории достигается введением относительной скорости [1]. Согласно тензорному закону такая скорость должна бы определяться разностью $u^{\alpha} - \tau^{\alpha}$. Но вектор τ^{α} есть смещение «жидкой точки» на интервале, измеренном в единицах «собственного времени» этой точки. Скорость измерена в других временных единицах. Собственно вектор τ^{α} и является единичным только благодаря различию временных масштабов. Поэтому смысл относительной скорости с точки зрения собственного времени физически бесконечно малого объема имеет вектор

$$V^{\alpha} = u^{\alpha} \left(\frac{\tau^0}{u^0} \right) - \tau^{\alpha}, \quad \langle V^{\alpha} \rangle = 0,$$
 (11)

а с точки зрения собственного времени материальной частицы вектор

$$U^{\alpha} = u^{\alpha} - \tau^{\alpha} \left(\frac{u_0}{\tau^0} \right). \tag{12}$$

Выражение (12) позволяет получить известное разбиение тензора частиц [3]

$$M^{\alpha\beta} = \int U^{\alpha} U^{\beta} f d\Omega + n_0 \tau^{\alpha} \langle u^{\beta} \rangle + n_0 \tau^{\beta} \langle u^{\alpha} \rangle - \tau^{\alpha} \tau^{\beta} \frac{n_0}{\tau^0} \langle u^{0} \rangle,$$

а (11) — выделять трансляционные члены в выражениях для моментов. Уравнение (5), например, преобразуется к виду

$$m\left(\frac{\partial}{\partial t} + \vartheta^k \frac{\partial}{\partial x^k}\right)\vartheta^l = \langle F^l \rangle - \frac{1}{n\sqrt{-g}} \frac{\partial}{\partial x^k} \sqrt{-g} \pi^{kl}, \tag{13}$$

где $\pi^{kl}=mn\left((v^k-\vartheta^k)\left(v^l-\vartheta^l\right)$ — гидродинамический 3-тензор напряжений. Построение соответствующего 4-тензора по сформулированному выше правилу сводится к замене m на $m\tau^0$

$$\pi^{\alpha\beta} \tau^0 = mc^2 \int V^{\alpha} V^{\beta} \left(\frac{u^0}{\tau^0} f \right) d\Omega. \tag{14}$$

Нетрудно выписать уравнения и для моментов более высокого порядка. Однако, чтобы получить их в непосредственно ковариантной форме, необходимо от переменных v^k перейти к переменным $v^k \tau^0 = c dx^k/d\sigma$. Производные при этом связаны формулой

$$\tau^{\alpha} \nabla_{\alpha} \tau^{\beta} = (g_{\gamma}^{\beta} - \tau^{\beta} \tau_{\gamma}) \left(\vartheta^{\alpha} \frac{\partial \vartheta^{\gamma}}{\partial x^{\alpha}} + \Gamma^{\gamma}_{\cdot \alpha \sigma} v^{\alpha} v^{\sigma} \right) \left(\frac{\tau^{0}}{c} \right)^{2}, \tag{15}$$

пользуясь которой, можно показать, что в односкоростном приближении

$$(u^{0} f) = n(x) \delta(v^{k} - \vartheta^{k}(x)) / \sqrt{-g}(u^{0})^{4}$$
(16)

(13) определяет для гравитирующих частиц уравнения геодезических. Мы видим, таким образом, что при переходе от статистических функций распределения к гидродинамике можно пользоваться нерелятивистской схемой моментов, а затем по указанному выше правилу построить соответствующие ковариантные величины. Двойственность описания релятивистской сплошной среды с помощью тензора энергиимпульса, с одной стороны, и моментов относительно функции распределения, с дру-

гой, — связана с наличием двух различных собственных времен: материальной частицы и физически бесконечно малой частицы.

Выражаю благодарность профессору А. А. Власову за предоставление темы и

обсуждение результатов.

ЛИТЕРАТУРА

1. Власов А. А. Статистические функции распределения. М., 1966.

2. Кузьменков Л. С. «Вестн. Моск. ун-та», физ., астрон., 13, № 5, 614, 1972. 3. Денен Г. Эйнштейновский сборник. М., 1969—1970, стр. 140.

Поступила в редакцию 25.5 1972 г.

Кафедра теоретической физики

УДК 621.378.325

А. Я. ТЕРЛЕЦКИЙ

ВЛИЯНИЕ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ НА ИЗЛУЧЕНИЕ ИОННОГО ЛАЗЕРА НА КРИПТОНЕ

Внешнее продольное магнитное поле значительно увеличивает мощность ионных ОКГ. Однако оно вносит ряд особенностей в излучение. Так, если ОКГ имеет окна Брюстера, то на них за счет эффектов Зеемана и Фарадея появляются дополнительные магнитооптические потери, которые увеличиваются с увеличением напря-

женности магнитного поля.

В настоящей работе исследовалась зависимость магнитооптических потерь излучения ионного лазера на Кг с добавкой Ne в пропорции 4 к 1 (λ =6471 Å) от напряженности магнитного поля. Использовалась кварцевая разрядная трубка с окнами Брюстера и с параметрами: \varnothing =5 мм, l_α =1 м, c/2L=75 Мги [1]. Трубка находилась внутри двухсекционного магнита, секции которого включались однонаправленно по полю или навстречу друг другу. При полях, включенных навстречу, влияние одного магнита на излучение компенсировалось влиянием другого с противоположной полярностью и излучение на выходе оставалось плоскополяризованным воположной полярностью и излучение на выходе оставалось плоскополяризованным [2]. В случае встречных полей мощность излучения ОКГ была больше, чем в случае однонаправленного поля, т. е. в госледнем имелись магнитооптические потери, которые, как видно из графиков на рис. 1 и 2, зависят от величины магнитного поля. Для того чтобы выяснить, как магнитооптические потери зависят от магнитного поля, воспользуемся методом стационарных амплитуд [2]. Пусть волна с компочентами E_x и E_y , отразившись от зеркала, пройдет через окно Брюстера и станет волной с компонентами E_x' и E_y' , где

$$E_x' = \alpha E_x, \quad E_y' = E_y, \tag{1}$$

 α — коэффициент пропускания окна Брюстера для компонента E_x (для кварца по формулам Френеля α =0,846). Проходя через активную среду, волна примет следующий вид:

$$E'_{x} = \beta_{\pi} \frac{E'_{x} + jE'_{y}}{2} + \beta_{\pi} \frac{E'_{x} - jE'_{y}}{2} = \frac{\beta_{\pi} + \beta_{\pi}}{2} E'_{x} + j \frac{\beta_{\pi} - \beta_{\pi}}{2} E'_{y},$$

$$E'_{y} = -\beta_{\pi}j \frac{E'_{x} + jE'_{y}}{2} + \beta_{\pi}j \frac{E'_{x} - jE'_{y}}{2} = -j \frac{\beta_{\pi} - \beta_{\pi}}{2} E'_{x} + \frac{\beta_{\pi} + \beta_{\pi}}{2} E'_{y},$$
(2)

где $\beta = re^{-i(k+ix)z}$ для левой (β_π) и правой (β_π) круговых поляризаций, $r = R\gamma$ $(R — общий коэффициент отражения зеркал, <math>\gamma$ — потери внутри резонатора), k и \varkappa — волновое число и показатель усиления, z — расстояние между зеркалами $(\underline{\alpha}$ ля простоты положим, что длина активной среды и расстояние между окнами Брюстера тоже равны z). Пройдя второе окно Брюстера, волна будет иметь компоненты $E_x^{\prime\prime\prime}$ и $E_y^{\prime\prime\prime}$, где