Вестник московского университета

€ 1

№ 3 — 1963

E COM

ФИЗИКА

Ф. А. КОРОЛЕВ, С. М. ДЬЯКОВА, В. И. ГРИДНЕВ

ВЫДЕЛЕНИЕ ИЗЛУЧЕНИЙ В ДАЛЕКОЙ ИНФРАКРАСНОЙ ОБЛАСТИ ПО МЕТОДУ ОСТАТОЧНЫХ ЛУЧЕЙ

Дана оптическая схема для выделения излучения с малым разрешением в области 52, 63 и 83 *мк*. Источником служила нихромовая проволока, нагреваемая до 1200—1300°.

В данной работе описано устройство для выделения излучения на 52, 63 и 83 мк. Для этой цели была применена оптическая система, основанная на принципе остаточных лучей [1]. Разработанная авторами оптическая система имеет ряд отличий по сравнению с описанными в литературе и значительно удобнее для работы с длинноволновым инфракрасным излучением. Наиболее распространенными в настоящее время схемами для выделения длинноволновой инфракрасной радиации являются схемы Пароди [2], Стронга [3] и Уайта [4].

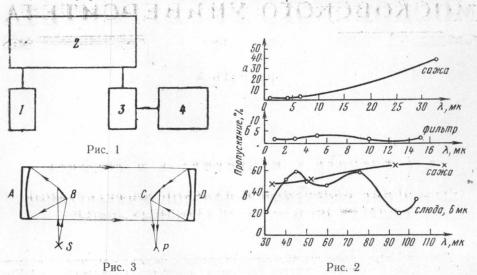
В данной работе была собрана установка, блок-схема которой представлена на рис. 1 (где I — источник, дающий излучение в инфракрасной области спектра, 2 — монохроматор остаточных лучей, 3 —

приемник, 4 — регистрирующая система).

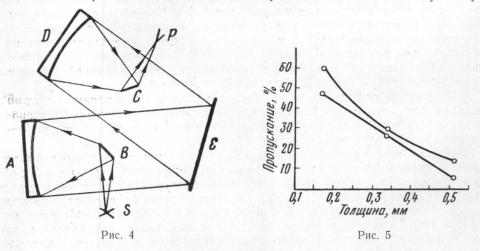
В качестве источника инфракрасного излучения служила нихромовая проволока, намотанная в виде конусообразной спирали и нагреваемая до температуры 1200—1300° (температура измерена пирометром ОППИР-09). Питание источника осуществлялось от сети переменного тока. Спираль помещалась в кожух, охлаждаемый водой. На окно кожуха, через которое проходила радиация источника, надевалась оправа с фильтром, который служил для устранения излучения в видимой и ближней инфракрасной областях спектра. Фильтр представлял собой слой скипидарной сажи, нанесенной на слюдяную подложку, толщиной 7—9 мк.

Пропускание фильтра в ближней инфракрасной области $(1-20\ m\kappa)$ измерялось на спектрографе ИКС-6. Толщина слоя скипидарной сажи подбиралась такой, чтобы кривая пропускания фильтра в интервале $1-20\ m\kappa$ имела вид, представленный на рис. 2. Кривые пропускания: a— слоя скипидарной сажи толщиной 71,5 $m\kappa$, построенные по данным Рубенса [5]; δ — фильтра, отсекающего видимую и ближнюю инфракрасную область спектра; δ — слюды толщиной 6 $m\kappa$ по Барнесу [6]. Излучение, прошедшее через фильтр, попадает в установку для выделения определенных спектральных интервалов длинноволновой инфракрасной

радиации. Оптическая схема применявшегося нами монохроматора остаточных лучей приведена на рис. 3. Здесь S — источник, P — приемник, B, C — плоские пластинки селективно отражающих кристаллов, A и D — вогнутые сферические пластинки тех же кристаллов. Пластинки B и C



имели диаметр 15 *мм* и толщину 5 *мм*; пластинки *А* и *D* — диаметр 40 *мм*, толщину 6 *мм*, радиус кривизны сферических поверхностей 120 *мм*. Юстировка оптической схемы проводилась по видимому свету



с помощью набора посеребренных стеклянных пластинок, форма которых точно повторяет форму пластинок из кристаллов. Для проверки отражающей способности различных материалов, поляризации при отражении и других измерений в отраженном излучении схема установки видоизменялась таким образом, как это показано на рис. 4. Обозначения на этом рисунке имеют тот же смысл, как и на рис. 3. Буквой в обозначена пластинка исследуемого материала. Приемником энергии служил радиационный термоэлемент. Порог чувствительности приемного устройства 10^{-9} вт. Сигнал с выхода приемника подавался на усилитель Козырева ФЭОУ-18. В качестве регистрирующих приборов упо-

обычному выражению теплового потока первого порядка приближе-

ния, обозначим $q^{(1)}$.

Чтобы выяснить вес дополнительных (барнеттовских) членов $\Delta q^{(2)} = q^{(2)} - q^{(1)}$, оценим величину их отношения к основному количеству $q^{(1)}$. Для этого примем за нормальный порядок величин линейный размер d (характерный для потока) и v, ρ и T (скорость, плотность и температуру в невозмущенном потоке). Для этого примем за нормальный порядок величин характерный для потока линейный размер d и величины v, ρ , T—скорость, плотность и температуру в невозмущенном потоке. Примем во внимание, что для газов число $\Pr = \frac{c_p \mu}{\kappa}$ близко к единице, и выполняются соотношения

$$\mu = k \rho c \lambda; \quad c = \sqrt{\frac{8}{\pi \kappa}} a,$$

где $k=0,499,\ c$ — средняя скорость теплового движения, λ — средняя длина свободного пути молекул, a — скорость звука, $\varkappa=c_p/c_v=1,405$ для воздуха.

Тогда отношение первого добавочного члена к основному в выра-

жении теплового потока $q^{(2)}$ будет иметь следующий вид:

$$\frac{\Delta \varphi_{1}^{(2)}}{q^{(1)}} = \theta_{1} \frac{\mu^{2}}{\rho TK} \cdot \frac{\partial v_{j}}{\partial x_{j}} = \theta_{1} \frac{P_{\Gamma}\mu}{c_{\rho}\rho T} \cdot \frac{\partial v_{j}}{\partial x_{j}} \simeq \theta_{1}k \left(\varkappa - 1\right) \sqrt{\frac{8}{\pi\varkappa}} \cdot \frac{\lambda}{d} \cdot \frac{v}{a} = \theta_{1}k \sqrt{\frac{8}{\pi\varkappa}} \left(\varkappa - 1\right) \text{KnM}.$$

Подставляя для коэффициентов числовые значения, получим

$$\frac{\Delta q_1^{(2)}}{q^{(1)}} \simeq 3.2 \, \text{KnM}.$$

Заметим, что отношения каждого из остальных барнеттовских добавочных членов к основному тепловому потоку также пропорциональны произведению чисел Кп и М и отличаются от $\Delta q_1^{(2)}/q^{(1)}$ лишь числовым коэффициентом. Таким образом, учет членов второго порядка приближения вносит в основной тепловой поток $q^{(1)}$ относительную добавку, не меньшую 3,2 KnM.

Рассмотрим величины этих добавок в условиях наших экспери-

ментов по измерениям температурного скачка.

В таблице приведены данные, характеризующие условия опытов, в которых измерялся теплообмен нагретой нити с потоком разреженно-

го воздуха. В ней помещены отношения $\frac{q_p}{q_\infty} = \left(\frac{Q_r}{\Delta T}\right)_p : \left(\frac{Q_r}{\Delta T}\right)_\infty$ потоков тепла теплопроводностью q_p к q_∞ при наличии температурного скачка q_p и в отсутствии скачка q_∞ , наблюдаемых при одинаковых перепадах температуры (ΔT) между ограничивающими газ поверхностями. По мере разрежения газа значение этого отношения закономерно убывает, начиная с единицы. Классическая теория объясняет это тем, что вследствие возрастания температурного скачка у поверхности тела с разрежением газа теплообмен между газом и телом становится все более затрудненным. Учет же дополнительных членов второго порядка приближения в тепловом потоке ведет к противоположному

Kn	М	ҚпМ	T	$\frac{q_p}{q_{\infty}}$	_{выс}	b(1)	$\frac{b(1) - b_{\text{SKC}}}{b(1)}$	$-\frac{\Delta b^{(2)}}{b^{(1)}}$
0,02	0,22	0,02	299	0,91	23,7	25,4	+0,07	0,06
0,08	0,21	0,02	295	0,87	24,8	25,0	+0,008	0,05
0,08	0,21	0,02	295	0,86	26,4	25,0	-0,05	0,05
0,09	0,24	0,02	296	0,86	24,6	25,1	+0,02	0,06
0,09	0,24	0,02	296	0,87	23,3	25,1	+0,07	0,06
0,10	0,22	0,02	299	0,91	23,7	25,4	+0,07	0,06
0,10	0,19	0,02	301	0,87	24,2	25,6	+0,05	0,06
0,11	0,21	0,02	301	0,83	28,0	25,6	-0,10	0,06
0,13	0,25	0,03	301	0,82	24,5	25,6	+0,04	0,09
0,15	0,26	0,01	300	0,81	23,0	25,5	+0,10	0,11
0,16	0,25	0,04	301	0,79	24,6	25,6	+0,02	0,11
0,16	0,49	0,08	298	0,79	25,0	25,3	+0,01	0,21
0,16	0,28	0,05	298	0,79	24,8	25,3	+0,01	0,14
0,17	0,24	0,04	302	0,79	25,0	25,7	+0,03	0,11
0,18	0,47	0,09	301	0,78	24,6	25,6	+0,05	0,22
0,21	0,26	0,06	302	0,75	25,3	25,7	+0,02	0,06
0,21	0,12	0,03	301	0,69	26,7	25,6	-0,04	0,07
0,21	0,12	0,03	301	0,69	26,7	25,6	-0,04	0,07
0,22	0,12	0,03	300	0,69	27,0	25,5	-0,06	0,08
0,22	0,12	0,03	301	0,68	27,4	25,6	-0,07	0,08
0,23	0,41	0,09	302	0,74	24,6	25,7	+0,04	0,22

	1			1	I	1	1	
0,27	0,29	0,08	298	0,70	24,0	25,3	+0,04	0,21
0,28	0,03	0,008	303	0,65	24,8	25,8	+0,04	0,03
0,37	0,08	0,03	306	0,57	26,0	26,1	+0,004	0,008
0,43	0,38	0,16	298	0,60	24,6	25,3	+0,03	0,34
0,50	0,40	0,20	296	0,54	26,4	25,1	-0,05	0,39
0,59	0,06	0,03	316	0,44	27,7	27,2	-0,02	0,09
0,64	0,17	0,11	298	0,50	24,1	25,3	+0,05	0,26
0,66	0,36	0,23	299	0,50	23,6	25,4	+0,07	0,42
0,71	0,31	0,22	300	0,43	27,8	25,5	-0,09	0,41
0,94	0,28	0,26	302	0,39	25,3	25,7	-0,02	0,45
1,02	0,28	0,29	300	0,38	24,7	25,5	+0,03	0,48
1,02	0,27	0,28	321	0,34	28,8	28,0	-0,03	0,47
1,13	0,28	0,32	323	0,31	29,9	28,2	-0,06	0,50
1,22	0,25	0,30	301	0,33	25,8	25,6	-0,01	0,49
1,	,,,,,,							
		I		1		1	, ,	

 ${\rm Kn-}$ число ${\rm Khygceha}$, ${\rm M-}$ число ${\rm Maxa}$, ${\it T-}$ температура газа (в $^{\circ}{\rm K}$),

 $q_p = \left(rac{Q_r}{\Delta T}
ight)_p$ — радиальный поток тепла при единичном перепаде температуры, измеренный при давлении газа p_r

 $b_{
m skc} = Cp\left(rac{q_{\infty}}{q_p} - 1
ight)$ — экспериментальная постоянная коэффициента температурного скачка (в $\epsilon \cdot ce\kappa^{-2}$); C — постоянная прибора.

 $b^{(1)}$ — постоянная коэффициента температурного скачка, вычисленная по формуле (3) при значении $\alpha=1$ (в $\epsilon \cdot ce\kappa^{-2}$), $\Delta b^{(2)}=b^{(2)}-b^{(1)}$ — поправка, обусловленная учетом членов второго приближения.

эффекту к улучшению теплообмена по мере разреженности среды. По мере разреженности среды удельный вес добавочных членов второго порядка приближения $\frac{\Delta q^{(2)}}{q^{(1)}}$, пропорциональных параметру КпM, растет.

Это явное противоречие нетрудно усмотреть в таблице, где помещены произведения чисел Кнудсена и Маха (КпМ), при которых проводились опыты. Не менее наглядно это противоречие выступает в поправке к температурному скачку. В таблице указаны значения — $\frac{\Delta b^{(2)}}{b^{(1)}}$ относи-

тельного уменьшения постоянной температурного скачка, обусловленные учетом барнеттовской добавки $\Delta q^{(2)}$ в тепловом потоке. Это относительное уменьшение коэффициента температурного скачка рассчитывалось следующим путем. Феноменологическое введение коэффициента температурного скачка γ связано с утверждением равенства плотностей потоков тепла приходящего q из газа к его границе с твердым телом и уходящего от этой границы в твердое тело $h(T_{\text{газ}}-T_{\text{ст}})=h\Delta T_{\text{ск}}$ при неравенстве температур обеих сред на границе (h-коэф-фициент теплообмена). При этом для скачка температуры $\Delta T_{\text{ск}}=\frac{q}{h}=$

 $= \gamma - \frac{q}{h}$, где $\gamma = \frac{K}{K}$ — отношение истинного коэффициента теплопроводности газа K к коэффициенту теплообмена h твердой стенки и газа является коэффициентом температурного скачка.

В соответствии с условиями для установившегося теплообмена в опыте с разреженным газом [h=h(p)] реализуется определенная величина $\gamma_{\rm skc}=\gamma(p)$ и осуществляется согласование между задаваемой величиной теплового потока $q_{\rm skc}$ и величиной наблюдаемого температурного скачка $\Delta T_{\rm ck}$ по уравнению

$$\Delta T_{\rm ck} = \gamma_{\rm 9kc} \, \frac{q_{\rm 9kc}}{K} \, . \tag{2}$$

Классическая теория температурного скачка основана на использовании решения кинетического уравнения Больцмана для функции распределения в первом приближении. При этом получают следующие выражения для теплового потока и коэффициента температурного скачка

$$q^{(1)} = -K \operatorname{grad} T,$$

$$\gamma = \frac{15}{4} \frac{2 - \alpha}{\alpha} \cdot \frac{\mu}{n} \sqrt{\frac{\pi RT}{2M}}.$$
(3)

Здесь α — коэффициент энергетической аккомодации, μ — динамическая вязкость, p — давление газа, M — его молекулярный вес, T — абсолютная температура и R — универсальная газовая постоянная.

В силу сложности выражений последующих членов в функции распределения более высоких порядков приближения, до сих пор отсутствует аналитическое выражение коэффициента температурного скачка $\gamma^{(2)}$ второго приближения. Однако, располагая выражением (1) для теплового потока во втором порядке приближения $q^{(2)}$, можно оценить влияние на величину γ барнеттовских добавок $\Delta q^{(2)}$ в тепловом потоке и сравнить $\Delta \gamma^{(2)}$ с результатами экспериментов. Описание реализующегося в действительности (в опыте) одного процесса теплообмена (2) между газом и твердым телом со скачком температуры на границе с помощью $q^{(1)}$ или $q^{(2)}$ — функций разных видов — обязывает

представлять и коэффициент ү также различными функциями от тех же переменных параметров, $\gamma^{(1)}$ или $\gamma^{(2)}$ такими, чтобы

$$\gamma^{(1)}q^{(1)} = \gamma^{(2)}q^{(2)} = [\gamma q]_{3\kappa c} = [K\Delta T_{c\kappa}]_{3\kappa c}.$$

Отсюда получим

$$\frac{\gamma^{(2)} - \gamma^{(1)}}{\gamma^{(1)}} = \frac{\Delta \gamma^{(2)}}{\gamma^{(1)}} = -\frac{\frac{\Delta q^{(2)}}{q^{(1)}}}{1 + \frac{\Delta q^{(2)}}{q^{(1)}}}.$$

Или, вводя независящую от давления величину $\gamma^{(1)}p=b^{(1)}$ — постоянную температурного скачка, и имея в виду, что $\frac{\Delta q^{(2)}}{q^{(1)}}=3,2\,\mathrm{KnM}$, будем иметь выражение для поправки к классическому значению постоянной температурного скачка $b^{(1)}$ в следующем виде:

$$\frac{-\Delta b^{(2)}}{b^{(1)}} = \frac{3.2 \text{ KnM}}{1 + 3.2 \text{ KnM}}.$$
 (4)

Рассчитанные таким образом поправки к классической величине постоянной температурного скачка помещены в последнем столбце таблицы. В предпоследнем столбце таблицы приведены относительные отклонения найденных в экспериментах значений $b_{
m skc}$ от вычисленных $b^{(1)}$ по формуле (3). Как видим, отклонения наблюденных значений от теоретических не только не выше барнеттовских, но и имеют разные знаки, тогда как учет барнеттовских добавок ведет к систематическому уменьшению температурного скачка с увеличением разреженности среды.

Измерения температурного скачка проведены вплоть до таких разрежений среды (Кп = 1,2) и больших значений градиентов температуры и скорости течения газа у стенки

$$\left(rac{\partial T}{\partial n} = 10^2 \div 10^3 \; epa\partial \cdot cm^{-1}; \;\; rac{\partial v}{\partial n} = 10^4 \div 10^6 \;\; ce\kappa^{-1}
ight),$$

когда эффекты второго порядка в тепловом потоке и вязких напряжениях могли быть обнаружены экспериментально. Однако результаты опытов свидетельствуют о том, что теплообмен твердого тела с потоком разреженного газа при наличии скачка температуры на границе в действительности осуществляется ближе к процессу, описываемому теорией первого порядка приближения, чем в приближении второго порядка. Анализ эффектов, связанных с учетом приближения Барнетта, показывает, что расхождение с опытом расчетов по выражениям второго порядка приближения оказывается тем большим, чем более разрежена среда.

ЛИТЕРАТУРА

1. Широков М. Ф. Физические основы газовой динамики. Физматгиз, М., 1958. 2. Предводителев А. С. «Изв. АН СССР», № 4, 1948; Intern. J. Heat Mass Transfer, No. 94, 1961.

3. Truesdell C. Journ. de Mathematiques pures et Appiliquees Nouviem Se-

rie 37, 2, 103, 1958.

4. Грибкова С. И., Штеменко Л. С. «Тр. Всесоюзной конференции по

тепло- и массообмену», 3, 1961. 5. Грибкова С. И., Штеменко Л. С. «Вестн. Моск. ун-та», сер. физики, астрономии, № 2, 1962.

Поступила в редакцию 15. 6 1962 г.

Кафедра молекулярной физики