В статье представлены результаты применения искусственных нейронных сетей в задаче распознавания видов цифровой модуляции радиосигналов. В качестве признаков распознавания предлагается использовать кумулянты 2-го и 4-го порядков, вычисляемых по значениям зарегистрированных отсчетов сигнала. Выбор состава информативных признаков (в данном случае набора кумулянтов) и формирование решающих правил осуществляется экспертным путем исходя из набора видов модуляции сигналов необходимых для распознавания. Исследования в данной области показывают, что формирование правил различения (классификатора) может осуществляться с использованием различных методов интеллектуального анализа, в частности искусственных нейронных сетей. Использование многослойного персептрона в качестве устройства классификации (распознавания) позволяет автоматизировать процесс построения решающих правил для распознавания видов цифровой модуляции радиосигналов. Предлагаемый метод обеспечивает достаточно высокую (0.7… 0.99) вероятность правильного распознавания сигналов с частотной (FSK), фазовой (PSK), амплитудной (ASK) и квадратурной фазовой (QAM) манипуляцией в условиях отсутствия синхронизации приемной системы по несущей частоте.
84.35.+i Neural networks
84.40.Ua Telecommunications: signal transmission and processing; communication satellites
Московский технический университет связи и информатики. Россия, 111024, Москва, ул. Авиамоторная, д. 8а