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A formalism that reveals community of nature between Wehner spots and the block-
ing effect on passage of particles through single crystals is grounded and de-
veloped. The method grew out of the author's work on the theory of the blocking
effect, and uses a nonlocal-statistical description of the beam particles, the:
atoms of the crystal, and the interaction between them.

The following reasons can be advanced for an inguiry into the community of mechanism
between the erosion of crystal atoms that results in Wehner spots [1-3] on the one hand
and, on the other, the blocking effect of ion motion in the directions of the principal
crystalliographic axes of a crystal [4-7]. In both cases, there is a center of emission.
(or scattering) within the crystal. In both cases, repulsive interaction forces between
the moving beam particles and the atoms of the crystal are basic.

There is a closed formalism [8-107] of the statistical theory that describes the
motion of arbitrary particles in a given periodic crystal field. This formalism is sensi-
tive to detzils of the interaction of the beam particles with the crystal's atoms.

It is natural to ask whether the qualitative differences between Wehner spots and
blocking lunes are merely a result of a quantitative difference in the interaction param-
eter characterizing the repulsive forces between the atoms of the crystal and the moving
beam particles, with preservation of the mechanism translating the particles through the
crystal in both cases. If this parameter is determined by the kinetic energy of the par-
ticles, there should be a continuocus transition of the Wehner-spot pattern to blocking
lunes and vice versa as this energy is varied. We shall extend the statistical theory de-
veloped earlier for blocking and channeling phenomena to resolution of this problem.

The coriginal statistical theory was based on abandonment of localization of the beam
particles and crystal atoms as a primary concept. It was based on continuous partilcle
position, velocity, and acceleration probability fields in the form of the distribution
functions

p(r, 8), fF(r, v, D, fF(r, v, v, 0
and the conservation laws for these functions [11-12].
The following problems are posed in this paper.

Develop a statistical apparatus for an arbitrary law of the interaction forces be-
tween the moving particles and the crystal atoms in order to unify the mechanisms of motlon
through the crystal for both ions and neutral particles.

In this interaction law, designate a parameter that is sensitive to changes in the
kinetic energy of particle motion. Variation of this parameter would make it possible to
verify the basic hypothesis: Do the Wehner-spot and blocking effects merge continuocusly
intoc one another without any changes in the statistical mechanism of beam-particle transla-
tieon through the crystal?

The 1nitial equation system for the distribution function of the particles in the

beam (f), the crystal-atom position probability (p), and the interaction between beam par-
ticles and crystal atoms is the same as 1in [8-10]:
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Here Kf(lr - r'|) and K(|r -~ r'|) are the potentials of pair interaction between the mov- |

ing beam particle and atoms of the crystal situated at points r and r' and of the two
crystal atoms with one another under equilibrium conditions.

The specific nature of the moving particles is fully determined by the energy Kf(lr -

- r'|) of the interaction. Therefore, the initial equations are valid for motion of both
charged and neutral particles through a given crystalline structure.

The source of particles (charged or neutral) in the crystal is described in the right-
hand side of the first equation by the assigned distribution of the beam-particle veloci-
ties at the source, ¢(|v]), and a Gaussian distribution of its position in the neighbor-
hood of the coordinate origin.

Equation system (1) can be used to determine the distributions of the particles mov- -
ing through the crystal with respect to the assigned source characteristics, the structure
of the crystal, and the types of interactions of all particles with one another.

The probability density distribution p(r) of the positions of the atoms in the crystal
was defined in [8]. For a bounded crystalline plate, it is determined by a Fourier inte-
gral series:
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Here a, is the unit-cell length of the crystal in the direction of the =z axis, v, is the
thickness of the crystal in the particle exit direction,va is the maximum number of sub-
lattice planes in the crystal through which the particle passes on its way to the collector,

and —Vpay is the distance from the beam particle scattering center to the rear boundary of

the crystal.

We shall seek the solution for the particle distribution function in the beam,
F{r, v, t), in the form of a series of successive approximations in a parameter that is
proportional to the intensity of the atom and atom-ion interactions (i.e., to the charge
of the ions in the beam):
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The basis for solution in the form of a series in ¢ was set forth in [8]. Here we
make it our task to obtain the concentration distribution in the beam of particles passing
through the crystals without specializing the pair-interaction energy K.(|r - r'[) in

order to establish the sensitivity of the scattering pattern to variations of the beam-
particle energy going into Kf(]r - r'|). Following [8], we obtain in the first approxima-
tion
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We transform (2), using the Polisson summation formula
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Here S(Ry) represents the following dependence of the beam particle density distribution
in the plane perpendicular to the symmetry axis:
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We cite the most characteristic of the results obtained.

Formula (3) was derived under the condition that the radius rp of the effective zone

of concentration of the beam in the cross-section plane is small compared to the distance
|z| to the collector, i.e.,

1rl|\<$lzl, v,

where y 1s an empirical coefficient that describes the properties of the experimental ap-

paratus. The numerical value of this coefficient may determine the largest possible num-
ber of Wehner spots or lunes.
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We see from the expression for R; that the double sum
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is a periodiec function in the x, y plane. The function S(R;) has extreme values at the
polnts
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When the distance (d”dg==aa,097¥%— between neighboring extremes exceeds the effective

width of the function S(Ry), the double sum in (3) describes a system of isolated spots
that are arranged periodically in the plane of the collector.

The triple sum in (3)
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is the result of superposition of spots from different planar sublattices, the total num-
ber of which is-va. Each of these sublattices produces spots with different periods,

widths, and intensities.

The special function S(RL represents the result of intensity distribution in a spot
produced by cone crystal atom situated in the sublattice numbered n, and separated from the
. The factor |z|/nzaZ indicates the increase in the

z axls by the distance |mxaX toma

scales on projection of the planar sublattices by the beam onto the collector plane.

The special function §(R)} contains information on the basic parameters of beam-
particle scattering by the crystal: the force interaction between the beam particles and
the crystal atoms, which includes the dependence on the kinetic energy of the beam par- :
ticles; the lattice constants a s ay, and a,s the resultant thermal scatter of the atoms

around the points of the crystal; and the Gaussian scatter of the center of divergence of
the beam:
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where Uaa and waa are the elastic coefficients that characterize the potential wells of
the crystal sites and the center of the source.

To include the parameter that depends on the kinetic energy of the moving particles
in Kf(|r - r']), we use the screened potential of the repulsive forces in the Thomas-Fermi

model, introducing an impenetrable sphere of radius ry into it and assuming
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in order of magnitude for the atoms; the salient condition requires the existence of an i

upper 1imit of the beam particle velocity spectrum (vcr)‘
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It would be more accurate to use a certain spectrum of values of the parameter PO'

411 variables related to the moving particles are eliminated inside the sphere. In par-
ticular, the Fourier transform of the interaction of the beam particle with the entire
crystal must contaln a cutoff parameter Tyt

o« -
o; (ky) = dnZ,Z,e* S e*s su;Ll;s sds. (8)
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Substituting (8) into expression (4), we arrive at the basic double integral of the
theory for the special function S(R-)
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Here we have made use of the absolute convergence of the salient integrals.

If the function S(Rlﬁ>0 in the neighborhood of the center
" fow of a spot (R ~0), the scattering intensity will, on the basis of
(1)
? :ﬁg% (3), be increased over the background (p F > 0) which corresponds
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The asymptotic behavior of this function at large and small p takes the form
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The values of the function I(u) are given in the table. It shows that I(u) is posi-
tive for all p > 1.57, and that its derivative I'(u) = dI(u)/dp is negative for all p3 3,

When R, =0, the function S§(R;) is expressed in terms of I'(u) as follows:
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We conclude that a sufficilent condition for positiveness of S{(0) is

roza(%<ri))"‘. (12)

When (12) 1is satisfied, we obtain the following formula for the depth of the spot:
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Thus, if forces of repulsion dominate in the forces of interaction between the beam
particles and crystal atoms in the presence of Impenetrable spheres around the atoms of
the crystal, and if the radius of the impenetrable spheres satisfies the condition (12),
what occurs is not blocking, but an increase in the intensity of the particles at the points
of the collector that fall on the centers of lunes.

The change in sign of the intensity has been proven only for the center of the spot.
However, the proof also remalns valid in a certain neighborhood of this center with a suf-
ficiently large radius to play a role in the experiment.

Actually, thié requires that 1t be possible to approximate the Bessel function o
Jo(kBRyn:a/]2z]) 1in the integral of (9) by unity even in the regions in which its argument is
nenzero. This is possible if the effective width of the other multiplier in the integrand

(the Gaussian function em>[-——~01)k¢|) is within the first maximum of the zeroth-order

Bessel function. This requires simultaneous satisfaction of two lnegualities
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which can be done if the radius of the neighborhood around the center of the spot (6ry)
is small enough. We find:
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Putting ({%(ﬂ))m/%~40—h 2| ~10 cm, and n, ~ 5, we obtain 6ry<< 0.5 cm, which is sufficient

to play an appreciable role in experiments.
In the other 1imit ry = 0, we have
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This function was investigated in [8]. Its asymptotic behavior in the neighborhood of the
center and on the periphery of the spot is
Xl

1
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where Ko(t) is a Macdonald function. In this case, the function §(R ) describes the
"lune" with a halo, that is characteristic for the blocking of ions. In particulzar, S(0y<0
in contrast to the preceding case.

In sum, we arrive at the conclusion that Wehner spots in a repulsive potential change
to blocking lunes, at least in the neighborhood of their centers, on a change in the radius
of the impenetrable spheres, which depends on the kinetic energy of the moving particles,

r, passes through the critical value qav3(7;(ﬁ))%. In either case, the statistical mech-
anism of particle translation through the érystal is wholly preserved.

REFERENCES

1. G. XK. Wehner, Phys. Rev., vol. 102, p. 690, 1956.

32



V. E. Yurasova, ZhTF, vol. 28, p. 1966, 1958.
M. Thompson, Defects and Radiation Damage in Metals, Cambridge University Press,

.

2.
3
1969.
4. V. E. Yurasova, V. A. Brzhezinskii, and G. M. Ivanov, ZhETF, vol. 47, no. 2(8),
p. 473, 1964.
5 A. F. Tulinov, DAN SSSR, vol. 162, p. 546, 1965.
5 A. F. Tulinov, Uspekhi fiz. nauk, vol. 87, no. 4, p. 585, 1965.
7 M. Thompson, Uspekhi fiz. nauk, vol. 99, no. 2, p. 297, 1969.
8. A. A. Vlasov and V. N. Kuraev, Vestnik Moskovskogo Unlversiteta, Fizilka [Moscow
University Physics Bulletin], vol. 13, no. 3, p. 328, 1972. '
9. A. A. Vlasov and V. N. Kuraev, Vestnik Moskovskogo Universiteta, Fizika [Moscow
University Physics Bulletinl], wvol. 13, no. 4, pp. 471, 1972.
10. A. A. Vlasov and V. N. Kuraev, Vestnik Moskovskogo Universiteta, Fizika [Moscow
University Physics Bulletin], Veol. 13, no. 4, p. 431, 1972.
11. A. A. Vlasov, Teoreticheskaya i matematicheskaya fizika, vol. 5, no. 3, p. 388,

1970.
12. A. A. Vlasov, Statistical Distribution Functions [in Russian), Moscow, 1966.
17 February 1973 Department of Theoretical Physics
33




