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It is shown that stability of rotationally symmetrical perturbations of a flow
of an ideal fiuid in a round pipe implles that the velocitlies of asymmetrical
perturbatlions are bounded.

It 1s known that Sguire's theorem that stability of two-dimensional perturbations
guarantees stability of three-dimensional perturbations is valid for a plane-parallel flow"
of a viscous fluid. For plane-parallel flows of an ideal fluid, Squire's theorem holds
orly in a greatly weakened form: stability of two-dimensional perturbations implies only
bounds on the velocities of three-dimensional perturbations, and the vorticity increases
with time [1,2].

If we go from plane-parallel flows to more general flows, for example, a flow in a
round pipe or between cylinders, Squire's theorem fails altougether for the viscous fluid.
Thus, it is known that & Couette flow between cylinders loses stabillty precisely in the
third dimension, while two~dimensional perturbations are always stable. TFor a round pipe,
there is good reason to believe that rotationally symmetrical perturbations (the analog of
the two-dimensicnal perturbations in this case) are always stable, but the efforts of )
investigators with respect to asyrmetrical perturbations have been directed to the con-
struction of examples of instability [3]. But if we go from the viscous to the ideal
fluid, the weakened versicn of Squire's theorem that obtained for plane-parallel flows is
also preserved for the round pipe. If stabllity of symmetrical perturbations is proven,
the velocities of unsymmetrical perturbations are also limited. This is the gist of the
present paper. The method will be fully analogous to that developed in [2].

We write the linearized equations of motion in the cylindrical coordinates r, 6, =z,
directing the 0z axis along the axis of the pipe. We shall use u for the radial velocity
component, v for the component in the direction of increasing polar angle 6, and w for the
component on Oz. We have
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Here W(r) 1s the velocity of the main stream at the boundéry under the condition
u(ro) = 0. We shall consider perturbations that depend harmonically on the coordinates

6, Z as m¢{ﬂn6+km]. We have for the amplitude functions
U -t kW == —p,lo,
vy = tkWu = -— inpjrp, (2)
w - hWe - We = — ikp/p,

(ru).fr = invjr - ikw = 0.

We convert to equations for the amplitude functions of the vortlcity components:
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L= inw/r —ikv, p,=iku—uw,. o 3
Differentiating these expressions with respect to t and applying (2), we get
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A certain linear combination of the vorticity components is expressed in terms of u:
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We choose the corresponding linear combination of Eqs. (4):
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It is convenient to endow the operator on r that appears in the first brackets with self-
adjoint form by substitution of variables. For this purpose we put

u=al)t, a@) VT FA (7)
We obtain an equation for &:
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It is obvious that ¢(r) is positive for all n and k. As for c¢(r), we shall henceforth
assume that it is nonvanishing. This condition is fully equivalent to Rayleigh's condi-
tion of the absence of Inflection points on the velocity profile in the plane-parallel
case, which guarantees stability of two-dimensional perturbations. For the parabolic pro-
file of greatest interest

W=W,(ri—r
we have
| c{ry = 4W,n?/(n® + Kr¥). (11)

At n = 0 (rotationally symmetrical perturbations), c¢(r)=0. For the other n we have c(r) <
< 0. For symmetrical perturbations, the situation is the same as for the plane-parallel
Couette flow: Eq. (8) degenerates
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(7 + ikW) & — o8 =0, (12)

from which
B —@()E=F(r)evon,
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Thus, &»—9(r)t is bounded for all t and is uniform with respect to r. It is easily seen
that £ is also bounded. For asymmetrical perturbations, when ¢ # 0, we obtain the conser-
vation law
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where K 1s an arbitrary constant (this law can be verified directly). The integral in
(13) is a function only of the single variable t and d/dt is the ordinary derivative of &
function of one variable. The constant K can be so chosen that (W—K)/c>0. Hence follows
boundedness in the rms values /) g, & and &.—¢t. We obtain from the first equation of (4)
and from (8)

(5 + W) | e + 2V &, —ad)] =0,
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from which
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Therefore p; is bounded in the root-mean-sqare by the same constant for all t (it is as~-

sumed at all times that the initial perturbations are bounded in the same sense). Now
from @~ r=":§

0= e (1, — By o (= h8), — ] (15)

and boundedness of &V¢~&r and £r in the rms implies boundedness of the integrals
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by the same constant, which is independent of t (if these integrals existed at t = 0), :
Q.E.D. The linear increase of vorticity is established in the same way as in [2]. It fol-
lows from the fact that although the quantities of the form j(r)e-#*"! are limited, their

derivatives.with respect to r increase linearly with t.
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