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Frequency mixing in focused beams on a fifth-order nonlinear susceptibility in
isotropic media is discussed theoretically. A detailed investigation 1is made of
the behavior of focusing functions, analytical solutions are found, and condi-
tions under which these solutions are valid are ascertained. Power optimization
in focusing is discussed for all processes lnvolved. Cascade processes in focused
beams are discussed cursorily.

Focusing of laser beams is an effective way to enhance conversion efficiency in non-
linear interactions, and this is particularly crucial for phase mismathcing processes when
phase-lock conditions are impossible to maintain or are fraught with great experimental
difficulties. It should be noted that beam focusing at the enter of a nonlinear medium
is the only available way, in investigations of gaseous media, to avoid breakdown of cell
windows while at the same time producing the required power density.

Conversion efficiency in focusing is enhanced by raising pump power density with
simultaneous partial or complete (vector synchronism) compensation of phase mismatch via
the noncollinearity of the interaction in the focused beam. The effect of focusing is
determined first and foremost by the degree of focusing, i.e., by the ratio of the length
of the nonlinear medium to the confocal parameter. The effect of focusing contrasts quite
sharply in the limiting cases of loose and tight focusing, when this ratio is respectively
much smaller than or much larger than unity. In the general case, a function taking into
account the effect of focusing on the effectiveness of some process depends on a large
array of parameters. In each specific case it is important to know the optimum focusing
conditions in order to attain maximum conversion efficiency. But analysis of the behavior
of the function aimed at ascertaining these conditions is possible only for the above lim-
iting cases when analytical solutions can be found for the function, and in all remaining
cases computer numerical calculations are the only option available.

The overwhelming majority of investigations carried out in nonlinear optics at the
present time involves processes occurring on second-order and third-order nonlinear sus-
ceptibilities, but in recent years interest in research on many-quantum interactlons on
higher (than third-order) nonlinear susceptibilities has been on the increase for a number
of reasons. Pocusing effects for processes occurring on lower-order nonlinearities have
been studied in detail in the literature [1-6]. The generation of higher-order harmonics
in focused beams has also been studied [6,7]. In particular, close attention has been
given [7] to the treatment of cascade processes (see also [8]) in fifth-harmonic genera-
tion and the problem has been solved numerically for the case of three coupled waves in
an isotropic medium; the results so obtained argue for the feasibility of efficient con-
version to the fifth harmonic. Conversion efficiency evaluations for some many-quantum
processes are also cited in [9]. Finally, we take note of the first experimental research
work [10,11] done on processes occurring on higher-order nonlinearities.

This article presents results of a theoretical investigation of frequency mixing pro-
cesses occurring in focused beams on a fifth-order nonlinear susceptibility. Nonresonance,
stationary (quasistationary) mixing processes in an 1S5otropic medium are discussed. Ex-
pressions for the power of the radiation generated are derived in the prespecified-field
" approximation. The behavior of the focusing functions is analyzed in detail, and analy-
tical solutions are found in the limiting cases of loose and tight focusing, while the
range of applicability of the analytical solutions is discussed. Results of computer
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numerical integration of the focusing funetions are plotted graphically in some instances.
Power optimization is discussed for all types of processes involved. The theory of cascade
processes in focused beams is discussed briefly. i

THEORY

Frequency mixing on a fifth-order nonlinear susceptibility is a six-photon process ahd
is characterized in general by the interaction of five distinct pump fields of frequency
w (n =1, ..., 5) exciting nonlinear polarization waves of frequencies ws=w;*ortotontae, |

(i, k, Z, my p =1, ..., 5) in the medium. With no loss in generality, we can restrict
the discussion in what follows to the following frequency-nondegenerate interactions:

0 - 0y + 03 + 04+ ©p (1.1)
0 + 0y 4 03+ 0, — o (1.2)
D=y 0y + 0y + @y —w, —ag (1.3)
O 4 0y — 03— 0, — @5 (1.4)
O — @y — 03— Oy — g (1.5)

which represent all modes of interactions occurring in frequency mixing on fifth-order
susceptibilities. (Here and in what follows, the type of process is indicated by the
second digit in the numeration of the expresssions.) All of the remaining partially or
totally frequency-degenerate interactions constitute particular cases of interactions (1).

It is also assumed below that the conversion process 1is stationary and nonresonant,
and the pump fields are assumed to be specified functions of the coordinates (spe01f1ed-
field approximation).

We shall assume that pumping comprises lower-order Gaussian beams propagating down
the z-axis, with fleld amplitudes EnO and wave vectors kn; all of the beams are focused

with the same confocal ratio and same position of the beam-waist region (beam foci) along:
the z-axis. The total pump field in the medium is representable in this case in the form

5
E(r )= 3 (Ea e + Er e, 2)
n-=l1

%(f-kf)]

E,(r) =Eo(l+i&~" e exp [_ b (141 (3)

where b = knwgn is the confocal focusing ratio (here Wy, are the beam radii in the focal

plane), f is the position of the focal plane along the z-axis, and k= 2@—{Nb is a dimen-
sionless normalized coordinate.

In the general case of elliptical polarization of the vectors EnO’ the relationship
between nonlinear polarization of the medium at frequency we and the pump fields 1s ex-

pressed in terms of all of the nonlinear susceptibility tensor components and is exceeding-
ly cumbersome. . We shall assume that all of the pump fields are linearly polarized in one
direction (say, along the x-axis). In this case the vectorial nature of the fields can be
neglected, and we can state the nonlinear polarization of the medium in scalar form

Fole, ) = L () ei0t 4 P (1) o, )

where & (r) 1s equal, in the case of an interaction of the first type (frequency addition);
to

5
Polry == Ny (09 [ E£.0). (5.1)

n=1
Here N is the density of the nonlinear medium, X®{(ws)=Xiwmxx{ws) 15 the susceptibility of

fifth order calculated per atom. The formulas for the remaining modes of interactions are
analogous, with E,(r) replaced by E;(r), for each negative frequency W,
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For definiteness, we shall assume that the nonlinear medium occupies the half space
z > 0, and that the half space z < 0 is a vacuum.

With this in mind, we obtain, from Egs. (3) and (5),

: . |
Polt) = 2= N1 (@) [TEaW @ (18 x

n=1 v * ( 6 )
® ik D (6 + ) |50,

% exp (ik' z) exp [._ AT

where k' = k; + ky + k3 +oky + k5, B(z) = {1 when z > 0 or 0 when z < 0}, and the nonlinear
polarization wave vector k' and the term W (£) for these interaction modes take on the form

( Ryt kg + gt Ryt Ry=k" (1 +i8)-8 (1 — i) (7.1)
‘m+@+m+m—m (1 + s : (7.2)

Byt hythyg—hky—ky W(E) = { (14+i)2(1—ig) (7.3
|ttt |0 +m-a—i- (7.4
Chy—ky— by —hy— k5 { (1 —ig)s (7.%)

The truncated wave equation for the slow amplitude of the field of the wave generated
Ag¢(ry takes the form [12]:

Bikg 220 A A1) = — an kP () e, (8)

where k60 and k6 are the wave vector of the wave generated in vacuum and the wave vector

of the wave generated in the medium, Ar is the transverse Laplacian. The solution of Eq.
(8) can be found either with the aid of the Green's function [1,3] or by the spectral
method [2,5,6]. When |Ak| Kk, &, we have for E (r) = 4,(r)e#s:

5
15 .
12— Ny (0 [ Emes x

EG (l') == i —2'—
bAk i i (9)
— 22y ’ O v . i
X d . WE_ bHELE)
5 e E—HDHEE)

where §==£%—is the dimensionless normalized coordinate of the beam focus (beam-waist

region), Ak=%k—* 1is the mismatch of the wave vectors of the wave generated and of the non-
linear polarization of the medium:

S Tt R e :
HE§) Py T (10)

If we put §=2(L—f)/b, where L is the length of the nonlinear medium, then Eg. (9) fully
determines the field of the wave generated in the z = L plane upon emergence from the non-
linear medium. In that case the power P6 of the radiation generated will be determined by
the expression

Bl koot
BREE

X ——T__ Ff(bAk,.l’_,L,_’i”_,
mmananany LT LT R

Py == (4,504.10—7) N[5 (0q)] P,PyP3P Py X

(11

Here n, are the refraction indices of the waves in the medium and the powers of all the

waves are expressed in watts, while the remaining quantities are expressed in the CGSE

system. The dimensionless functions FJ (bA&-%q"%,égJ take into account focusing effects
and exhibit the form (subscript j denoting the type of process):

F, (‘bAk, {- %%): i"b jande | (12)
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In the case of partially or completely frequency-degenerate processes, the numerical
coefficient in Eq. (11) will be different. This coefficlent can be represented in the form

(8.007-10 9)a , where o is the numerical coefficient in the expression of type 5 for the
corresponding process. In particular, when a fifth harmonic is generated, o = 1/16 and

the numerical coefficlent in Eq. (11) is 3.128-107 %1,

INVESTIGATION OF FUNCTIONS Fj(bAk,%,LL, %.)

Formulas (12) can be treated most conveniently as dependences on the parameter bAk
at fixed values of the remaining parameters. The general nature of this dependence 1s de-
termined by the size of the focusing parameter L/b held fixed, and differs substantially
in the limiting cases of loose and tight focusing. In those cases, Egs. (12) lend them-
selves to simplification and analytical solutions can be found.

At the outset, we consider the loose focusing case(b}dowhich, generally speakilng,
always occurs even in unfocused beams, because of beam divergence. In that case Fj is

representable in the form

b oF EN g K (LN f( bAE L NL

F,(bAk,—L-, T )m 4= (b)smc [( 2 +m:) b], (13)
where

{3 (14.1)
4 3 (14.2)
m,~=v——;,—+ 1 (14.3)
|»~1 (14.4)
—3 (14.5)

Recalling that E'<{E<&l, terms linear in £ and &' are retained everywhere in the derivation
of Eq. (13). Clearly, we see from Eq. (13), in this approximation the position of the
beam focus does not affect the value of F. (of course, within the framework of the approxi-

mation,i.e., when f€b). Estimates show that Egs. (13) are valid when.é}-?~§:mi.

In the case of tight focusing at the center of the nonlinear medium‘(%7==m& %}«>Q
f§==&*°q), we can state :
k e ) _ bak,,
F; (bAk; 0; 0,5, — I j d§’ W(g —i2lng 2 . (15)
—-f§’)
and hence, utilizing residue theory, we arrive at
n? f bAR \E g
I [ 22 ) etak AR,
Fy (bAk; 0; 0,5; Iy=1 9 (=) (16.1)
. 0, AR>0
F (bAk~ 0; 0.5 J‘—) -
{ 52 . Ak
2 ,[[bme(——+1) 2] +4} erbk, AR<O (16.2)
ls(-~+4)
= [
AW T, ARD>O
£ 6
(1)
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t———— ? & l s, AR >0,
[ (T"")

Fy (b Ak; 0; 0.5; ’?7) -

0, AkX<O (16.5)

" _ bk

= m{[bm(—:f—— 1) —2]'+'4—se ,T(:_:-'l )}’e-;mf AR>O.

In tight focusing onto the entrance (f=0) or exit {f=L) boundary of the medium, one of
the limits of the integral in Eg. (15) goes to zero, so that

Fi (b8, 0,0, &) = F) (bAk; 0.1, %)=
= F/ {bak 0, 05 <) +F,

where Fj 1s the contribution made by the imaginary part of the integral. In particular,
for the frequency addition process we have

() B =) ¢

(228) 28 2], arco

+

Fi (17.1)

I

2
() R san+
+ (ﬁ)’——"—;"f#+2]‘, Ak>0

2

The maximum value of Fj = 0.3153 at bAk=—2,44. Here Ei(x), Ei(x) are the integral exponen-
tial functions. The formulas for the remaining Fj contain similar, but more cumbersome,
functions, and need not be cited here.

When the focus of the beams is displaced from the boundary of the medium toward the
center of the medium, the contribution made by the imaginary part of the integral, ocdd
with respect to &', declines to zero in short order, while the contribution made by the
real part of the integral tends rapidly to the value of Fj (bAk; 03 0.53 k"/k'). In physi-

cal terms, the explanation is that the basic contribution made to the amplitude of the
field generated is that made by the region near the focus of the beams with a high pump
fileld Intensity, the dimensions of the region are relatively modest, and as long as it is
~accommodated entirely within the cell Fy remain weakly dependent on the position of the
beams' focus and equal their value for Tocusing at the center of the medium. Estimates
show that the difference from Eqs. (16) does not exceed one percent for any value of bAk,

provided % bK< :;(L;— b).
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Fig. 1. Fl(bAk, b/L, 1/2, 1) as a function of bAk for: 1) b/L = 3, 2) b/L = 2,
3) b/L = 1, 4) b/L = 0.5 and 5) b/L = 1/3.

Fig. 2. Fz(bAk, 1, 1/2, k"/k') as a function of bAk for: 1) k"/k' = 1.2; 2)
k"/k' = 1.5; 3) k"/k' = 2; 4) k"/k' = 3 and 5) k"/k' = 5.

Fig. 3. FZ(bAk, 1/3, 1/2, k"/k') as a function of bAk for k"/k'. Notation same
as in Fig. 2.

Fig. 4. F3(bAk, 1, /2, ¥x"/k') as a function of bAk for k"/k'. Notation same
as in Fig. 2.

The condition for validity of Egs. (16) can be estimated most simply for the function
Fq (frequency addition). 1In this case k' = k" and the transition from the exact expres-

sion (12) to the approximate expression (15) involves no more than a replacement of the
finite limits §=¢ by infinite limits. The error in the value of Fl incurred in that re-

placement satisfies at any value of bAk the inequality
sl (3)]x

X {Fy (6Ak; 0; 0,5; 1)},

(18)

For all the remaining functions, at k' # k", the conversion to (15) involves, in addition.
to substitution of limits, passage to the limit under the integral silgn in Eq. (12) as
g+, and an additional constraint is imposed on the validity of this conversion. In

these cases we can resort to the following approximate estimate: for any value of bAk we
have

aFi< 4[' +(+ ’; )a]_2 {F’ (m; 0; 05; ;:_)]u2 (19)

We infer from formulas (18) and (19) that Eqs. (16) can be used to good advantage right up
to (k'/k")(L/b) = 3, whereupon AFig0,06 for all values of bAk.

72



At values of the focusing parameter Lib~1,
approximations (13) and (16) are unacceptable,
and the only recourse open is to computer
numerical calculations of Eg. (12). Graphs
of the dependence of function Fl on the par-

ameter bAk for focusing at the center of the
medium are plotted in Fig. 1 for values of the
focusing parameter L/b = 1/3, 1/2, 1, 2, 3;

4 T note that when L/b = 3 the difference from
Sak values computed using Ea. (16.1) agree quite
Mig. 5. FB(bAk, 1/3, 1/2, k"/k') _ closely with the estimate (18) at any bdk
2 a function of bak for k"/k'. value. Graphs of F2 as a function of pAk are

Notation same as in Fig. 2. plotted in Fig. 2 and Fig. 3 for focusing at
the center of the medium in the cases Ljb=I
and Lfb=3, if x"/k" = 1.2, 1.5, 2.0, 3.0, 5.0.
Similar graphs appear in Fig. 4 and Fig. 5 for the function F3.

POWER OPTIMIZATION IN FOCUSING

Under conditions where the effect exerted by limiting factors (absorption, self-focus-
ing, saturation, breakdown) can be safely neglected, Eq. (11) is valid for the power and

s ”
P12 @dP (T12.) 55 F1 (088 . 1 )
n=sl

If the values of P, % and k"/k' can be assigned, then power optimization reduces to
optimization of the ratio N2-2F; as the parameters N,Ak,bpi-and f/L are allowed to vary.

Let us consider some characteristic patterns.

1. From the results of the preceding section, we infer that the most efficient focus-
ing in any case will occur when '

_E;b/L<f/L<t—f(1-%).

Focusing is considered optimal when at the center of the nonlinear medium(f==%%,§==§}

2. Mismatch of the wave vectors Ak in liquid and gaseous media can be varied inde-
pendently of the density N via the introduction of buffering impurities to alter the re-
fraction indices without affecting the nonlinear properties of the medium. In that case
the dependence on N will be obvious, and it will be sufficient to vary Ak with b held
fixed in order to optimize function Fj'

If no special measures are taken to vary Ak, then Ak~N and the value of the product
(bAR)2F; will have to be optimized by allowing Ak to vary with b held fixed, whereupon the
optimum wave vector mismatch (Ak) opt will also determine the optimum density Nopt of the
medium.

3. While the value of Ak is held fixed, the optimum value of the confocal parameter
b can be determined from the maximization condition for (bAk)-2F;.

When Ak=£0, power optimization is possible in the 1imit as b0 only in the case of
processes ws=o+ozt+astwst0s and vs=o—w—az—os—ws. 1he power increases without bound as
the confocal parameter is decreased, for all the remaining types of processes at Aks=0 (and
if Ak is independent of N, the same holds for Ak=0 also). In these cases, power optimiza-
tion reduces to an initial assignment of minimum b value at which all of the limiting
procesies can be safely neglected, with further optimization based on varying Ak (see sec-
tion 2).

The selection of optimum conditions is simplified in those cases where analytical
solutions are valid for the functions F..

in the loose focusing case (§rn-<10-q, we infer from formula (13) that P,~ bﬂsmcz-
[(fﬁi4— ) ]. Since the value of the confocal parameter is always finite (b = kw ) in the
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case of confined beams, even if unfocused, synchronous operation in such beams is achileved
at some small mismatch of the wave vectors Akopt = —2mj/b, and this condition goes over :

into the condition Akopt = 0 for the case of an infinite plane wave in the limit as p»oo.
In the tight focusing case, Egs. (16) are valid with sufficient accuracy all the way

to (k'/k") (L/b) > 3. Consider here the optimization conditions for the frequency addition

process. With Ags£0 held fixed, and b allowed to vary (see section 3), power is optimized -

at bAk=—4. With b held fixed and Ak allowed to vary (see section 2), power is optimized
at bAk=—6, provided Ak is a parameter independent of N, and at 8Ak=—8 when Ak~N.

Note further that all the focusing effects were discussed for the case where the con-
focal parameters bn and the positions of the beam foci fn are identical for all of the pump
beams. This cholce is not a coincidence. In discussing the general case where the bn and
fn differ for all the beams, we can show that the focusing functions become maximized as

b~k and as f,—f , other things being equal, and the same goes for the power. We do not
present here any general formulas for the functions Fj’ given their cumbersomeness. As an

example, we consider the case of loose focusing when the positions of the foeci are identi-
cal (f,=f), but the confocal parameters b differ; putting b,=b/B., where b—=max{b,} and p.>I,

we obtain )

g E (LY gien [ (AR, ) L

Fi=t ’*B(b)smc (5 +m”) 5], (20)
where

5 . . 2 5
. - : B .
kﬂ = Eknﬁll u mjs) = e -;’B— + 2 ﬂusgﬂ ®,. B
ne=] n=1
It is readily seen that Eq. (20) is maximized and coincides with Eq. (13) when Bn=1.
In the tight focusing case, discrepancies between the values of bn and fn result in a

shift of the poles of the integrand toward larger values on the imaginary axis, which in
furn means a decrease in the Fj‘ The above imposes stringent requirements on the selec-

tion of the confocal parameters and on matching of the foeil of the beams. Estimates show
that for mismatches Ab,, Af,<0,06 b, conversion efficiency loss is not greater than 20%.
TREATMENT OF CASCADE PROCESSES

In the case of six-photon interactions in an isotropic medium it 1s very characteris-
tic that, simultaneously with the direct process at work on the nonlinear susceptibility

x(5), generation of a field of frequency wg is brought about by a whole series of cascade

processes on a third-order nonlinear susceptibility x(3) {8]. For example, in the case
of the interaction ws=mi+ae+ a;—wr—ows the following cascade processes are possible

O + @y + O G, O — Oy — O+ 0,
- Ld

(|)1+(!)z_(|)4—"ms: (')8+ws_m$—"m0',

O — Oy — Q=05 , 0 Oy + @ -

and so on. In the prespecified-field approximation, dealing with each cascade process
leads to solution of a system of two truncated equations for the slow amplitudes of the

fields A,(r). and A@aj of respective frequencies wg and We:

9k, 240 [ A\ A @)= — 4B P, (1) F,

az :
18] (21)
2 y ‘
2iky 2O Ay KD () = — ke TP () et

A formula for &(r)can be derived in explicit form from the solution of the first equation,
and this makes it possible to solve the second equation as well. If pumping is specified

in form (2), the solution for the field Ef () =APe™zexcited in cascade fashion can be rep-
resented, in the case of nondegenerate interactions (1), in the form
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EP(r) = ~ 3 qa Rk poa [%® (0,) 1 (0g)] &% X
4 fighy
. . E (22)
b f 4 Py
x [1 2l (005, b8k . T 4 5F)-

=l

.k
In the case of the cascade processes wzaLor+®ss ©:EOmd0p—>0s, 1 (bAk, bAksv-%, 1 E _3)

exhibits the form L' K R
: ~ e
2 ) (g
]:S dg' € Q‘(ls ®)
' t—it)
- bk . (23)
’ —t—s—ﬁ’—' —_——
’x.}dga 7 T ™ .
, b —&EVH " BV YO 6", 8, )

with the notation

, 1 e

R e
s

(b — k) —i (& —k)E

PRV |
V(& O ==t T

(D,(E': E" §)=T!"_i 5';& ’ Aks=ks““k;-

Here ks’ ké are the wave vectors of the field and of the nonlinear polarization of the
medium of frequency wg and k','=k,+k,+k,. For Q.(t”), eguations

(Lg% o,=0o+ e+,
Q‘ (g') =(1— i&') (1+ g"’)—_l‘ O, = 0 + W — O,

(1=, o,=0,—0;—0,
are valld [5].

The expressions for Q&"(g’) are similar when the corresponding frequency constraints are
fulfilled for es=w,*om*w0p,. IN the case of cascade addition of frequencies ®;+w;+wr>ws,
@;+omtwy>0s, Eq. (23) simplifies appreciably; in this case we have k' = k", k! = kI, and

I{oAk; bAR; -2y L1 1) = iEy—1 BRS
(68 ki 5 3 15 1) = Ui enp [ U+ &
3 —f EA_k(E' —3) I bAk, (E’—{’ . ( 2 L‘ )

—

Iy= e .t
* jg (1 4 idg (g

In the tight focusing case, with focusing at the center of the nonlinear medium (&, {—o0),
the double integral ILi=Relz+ilml, is

bAk
I Ak, (Ak Ak)e®, AR AR <O
Rel,,= i :
0, Ak, <BES0; A0, Ak, >0; Ak>0, Ak, — arbitrary
bAk
Zpe? [Ak” 2ARAR, + 2Ak, (Ak — Ak,)ln'M'].
I Iy= Akg

. Ak <0, Ak, — arbitrary
0, Ak>0, Ak,—modoe -

As a function of two variables pAk, bAk, Relp has an absolute maximum at bAk=2bAk=—4; Im Ty

" has an absolute maximum at bAk,=—4; bAk,—=-—0,333, and an absolute minimum at bAk=—4, bAk;=—3,667,
equal in absolute value.
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In the case of the cascade processes witojfor+os, Omtop—os—ros (With the frequency W
subtracted in the second stage),
28 @t

e ? , (e—ikE), Q@) H(E. )

have to be replaced in Eq. (23) by their complex conjugates, and a minus sign must be pre--
fixed to the entire expression; then

1+ ljgl)_zi 0 = o, + ©p,—

) "o — '3 .
Q‘G’ (E)_(l ] ig) (l+§'2)—l' m.:ﬁ)m—-'(q)p—-ﬁ)‘

The total field generated Edr)at frequency wg can be stated in the form

E,(r)=E;(r)+2E‘ss’(r)=ReE°+i_ImE,, where Eq. (9) is valid for Fg(r) and summation over s encom-
passes all possible cascade processes (22). Note that the value of E(g) can be of the

same order of magnitude as the value of E6 [8], and in some instances can even exceed that

value, as for example when a fifth-order harmonic is generated under two-photon resonance
conditions. In that case the presence of double resonance gain is typical of the cascade
process o+o+o>30, o+o+3e-+506. Discussion of resonance processes goes beyond the scope of
the present article and will be published subsequently.

In summary, the article discusses characteristic features of frequency shift in fo-
cused beams on a fifth-order nonlinear susceptibility, with derivation of some results and.
drawing of some inferences. Comparison with similar results arrived at for processes oc-
curring on lower-order nonlinearities [1-6] shows that focusing efficiency is enhanced
with increasing order of the nonlinear process, while the dependence of the power output on
the confocal parameter becomes more pronounced, and the basic contribution to laser action
in tight focusing is made by the shortest region of all near the focus of the beams. When’
n > 3, where n is the order of the nonlinear susceptibility, the length of thils region

(n)
N
focusing (Eq. (13)) conversion efficiency depends on the ratio k"/k'; this conclusion holds
good for processes at work on third-order susceptibilities, as discussed by Bjorklund [5].
Note that analytical solutions of type (16), valid when the length of the nonlinear medium,

L > Lé%% ~ 10 k"b/k', can be arrived at for those processes in the hard focusing case.

We present a concrete estimate of the power of the fifth harmonic of radiation emitted
by a neodymium-doped laser in sodium vapor. Calculations yield x®~10* CGSE units -emS3,

Ab~—T72-10% N em . Assigning the values N~5.101 cm“3, Pi~108 W, and b ~ 3 cm
(bAk~—11), and cell length L>10 cm from Egs. (11) and (16.1), we obtain Pg(50)~3-10° W.

4 Lo .
A_QU“4*-D2-§7b. In contrast to [5], it is demonstrated in this paper that in loose

The author is indebted to S. A, Akhmanov and XK. N. Drabovich for their kind support
and sustained interest in the work and also to S. G. Grebenyuk for kind assistance in
computer programming and calculations,

REFERENCES
1. A. P. Sukhorukov, Izv. Vuzov. Radiofizika, no. 9, p. 116, 1966.
2. D. A. Kleinman, A. Ashkin, and J. D. Boyd, Phys. Rev., vol. 145, p. 338, 1966.
3. A. P. Sukhorukov and I. V. Tomev, ZhETF, vol. 58, p. 1626, 1970.
4. R. B. Miles and S. E. Harris, IEEE, vol. QE-9, p. 470, 1970.
5. G. C. Bjorklund, IEEE, vol. QE-11, p. 287, 1975.
6. J. F. Ward and G. H. C. New, Phys. Rev., vol. 185, p. 57, 1968.
7. I. V. Tomov and M. C. Richardson, IEEE, vol. QE-12, p. 521, 1976.
8. S. A. Akhmanov, A. N. Dubovik, S. A. Magnitskii, S. M. Saltiel, I. V. Tomov, and

V. G. Tunkin, Abstracts of Reports Presented to the T7th All-Union Conference on Coherent
and Nonlinear Opties [in Russian], Tashkent, 1974.

9. S. E. Harris, Phys. Rev. Lett., vol. 31, p. 341, 1973.

10. S. A. Akhmanov, A. N. Dubovik, S. M. Saltiel, I. V. Tomov, and V. G. Tunkin,
Pis'ma v ZhETF, vol. 20, p. 264, 1974.

11. S. A. Akhmanov, V. A. Martynov, S. M. Saltiel, and V. G. Tunkin, Pis'ma v ZhETPF,
vol. 22, p. 143, 1975. ‘

76



12. S. A. Akhmanov and R. V. Khokﬁlov, Advances in Nonlinear Optics [in Russian],
Moscow, 1964.

28 January 1977 » Department of General Physics
for Mechanics and Mathematics Division

77




