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The algebraic approach has one of the leading places amongst rigorous meth-
ods in modern quantum-field theory. The technique for constructing the dynamics
of guantum-field models is based on networks of local algebras for the observables
and the fields, which are von Neumann or C¥* algebras. On the other hand, in the
initial stage such models are usually specified as their Whiteman fields, which

are unrestricted operators A(f) satisfying a system of Whiteman axioms. There-
fore, in examining the model one encounters the standard problem of constructing
a network of local algebras for a given system of Whiteman fields A(F). It is
possible to algebrize the Whiteman theory in two ways. We can consider the fields
A(f) themselves as algebraic objects and the correspondence £ — A(f) can be in-
terpreted as the representation of the basic-function topological algebra in

the algebra L(®)of all unbounded operators in Hilbert space g, defined in a
common dense region 2. This representation can be obtained by means of a canon-
ical procedure from a positive functional (the Whiteman functional) in basic-
function algebra, where the axioms in the Whiteman theory are initially intro-
duced for that functional, while the cancnical procedure ensures that they ap-

ply for the represéntation operator system A(f). That approach is called the
algebraic Borhers' approach, and the test-function algebra on which it is based
is called a Borhers algebra. On the other hand, we may construct bounded func-

tions from the operators A(f). These bounded functions will generate certain
von Neumann algebras, namely the fileld algebras &F(0), and the next task then will
consist in proving the axioms of relativistic quantum theory for these algebras.
Each of these approaches has advantages and 1ts own applications.

In this note and one following 1t, we consider the algebraic description
of a system of quantized arbitrary-spin fields. First we consider the first of
the above approaches, for which we construct an extension of Borhers' alge-
braic formalism to the case of arbitrary spin, which constitutes a system of
Whiteman fields for the local network of unbounded-operator algebras. The con-
struction of the local network of von Neumann field algebras will be considered
in the next paper.

‘ 1. A Whiteman field of arbitrary spin [1] is the generalized function A(f)

in the space of multicomponent basic functions f=(f ..f,), i=S(R), whose values be-
long to the set of unbounded operators in Hilbert space g The fileld spin is

determined by the tensor transformation law of the basic functions f under
Poincare transformations (a, A) of Minkowskl space M. In the present case, the
carbitrary (finite) spin 1s such that the law takes the form :
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where A is an element in the universal covering SL(2, C) of the connected com-

ponent L*+ of the Lorentz group uniquely defining Ael!, from

N () == 71 Sp (7o A7) [l"'b e

i, O; are Pauli matrices

and V(A) is a representatlon of SL(2 C) of finite dimensions r. The fields

A(f) and the conjugate ones A*(f) are specified in a common region # dense in

% (the Gording region) and satisfy the standard system of Whiteman axioms. Ac-
cording to the relativistic covariance axiom, in 5 we are given a unitary strong-
ly continuous representation U(aA) of the Poincare group that leaves invariant

the region 2 and the cyclic vacuum vector &= and is such that

UaA) A U (a\)™ = AFeY,

where 1(a, A) is given by (1). The fields A(f) form a polynomial algebra ? in
@ , which for the sake of generality we will not assume to be irreducible. Also,
we do net assume that the vacuum vector gd is unique.

2. As our Borhers algebra we consider the algebra Q of basic functions
taking the form

= (%o (S (R;)@r)@u_

Any element teQ, is a sequence, in which term n

@, = E= LS TR I G STUPINI xn)}il-.._..in::l

is a tensor of group SL(2, C) that transforms as the irreducible product repre-

sentation &9V@f‘)of the n representations V(A_l) of dimensions r; we assume that
the number of nonzerc terms in the sequence is always finite. By means of a
natural generalization the scalar case enables us to define in QO the non-
commutative product

(f "g)n == Z f[. ----- iy (x,l’ oo ’ x.':? gi(,v‘. wpreein (-\.k"i-l' DR x::)‘

The Schwarz kernel fopology from S(RA) is transferred to QO and converts QO into

a topological algebra containing unit 3;(]0 0,..). Apart fron equlvalence we

define in QO the representation of the Poincare group <$
Vi A e fl. v“fesz,, > T0Y o (flaty -,
TRt O o) = (R (e )Y

‘ Wil

(2)

The term apart from equivalence 1s to be understood as follows: two elements

of the algebra f and g having identical ftensor structures transform as eguivalent
representations, but not necessarily identically equal ones.

It is readily seen that the representation is matched to multiplication in
QA
0
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The group SL(2, C) allows two forms of nonequivalent irreducible representa-
tions. Therefore, we can consider also the algebra Qon in whi¢ch we are given the

canjugate representation V(A¥). The algebra QOn consists of elements of the
following form: '

where nis a matrix realization of the linear parity operator, i.e., the gener-
ator of the spatial reflection M. The parity operator has the following prop-
erties:

N =£,

R (W (A 7)) = QV ().

n

Then (). transforms as ®V(A*). As the representations V(A_l) and V(A¥*) are not
equivalent, we cannot introduce involution in a natural fashion into ﬂo(viathe

complex conjugate). Therefore, ac our Borhers algebra we will in future use

0" =000 . In accordance with the generally accepted symbols Dmm and Pnmy for
irreducible nonequivalent representations of SL(2, C) we get that the represen-

tation gtmm@@iam, acts in QO*. Representations of this form are called real. As

the description of real physical fields uses only real representations of SL(2, C)
(see, forexample, [2]), this constraint on V(4) is not a fundamental one.

'

Then in Q*=QePQU" we can introduce the involution

where the plus sign denotes the complex conjugate in application to the sequence
terms.

3. The description of a physical system in this formalism is specified Hy
means of a positive functional W in the algebra QO* subordinate to the system of

axloms and called the Whitemah'functional. The axioms imposed on W are obtained
by direct reformulation of the Whiteman standard axioms in terms of the algebra
QO* and functional W,

We formulate the relativistlc covariance axiom in the usual way:

Wi =wi view% @ A)esrl. (%)

The formulation for the locally axiom in the Borhers formalism is constructed
in such a way as to provide local commutativeness in the operators for the rep-
resentation I corresponding to W. This leads to the requirement that the null
‘Sp&C€«IOOf functional W includes the locality ideal J;5 namely, the two-sided

ideal of 90* generated by linear combinations of the products of the elements

f such that _
}:l(xl' ... 'xn) =g(xl' ey '\‘i' XH'" e ..‘C”) _

—-g(xl. ees Xipds Xipr o v ey x")v

where £(%,.,%)=0 for Xi—xiu)*>0, . In our case it must be borne in mind that these
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fields may also be anticommutating. The commutation structure may be expressed

as a unique condition called locality with torsion in the general system of

fields including both commutating and anticommutating operators. This condi-

tion is formulated by means of a speclal transformation upon the set of fields,
which acts identically on the commutating (boson) operators and changes the signs
of the anticommutating {(fermion) operators. In order that the operators of repre-
sentation I should satisfy locality with torsion, we clearly have to define the
transformation of torsion in the algebra QO*, which has a unitary realization

in the space of representation II. Further, on the basis of this transformation
i1t is necessary to modify the definition &f the locality ideal JZ‘ It has been

shown [3] that the torsion operation can be constructed if we are given the rep-
resentation of the Poincare group. Then the desired cperation is defined via a
transformation corresponding to the element (0; -I) from the universal covering
P=(M, SL(2, C)) of the Poincare group.

Following [3], we consider in QO* an automorphism ugy corresponding to (0; -T):
4y T §O0 vieQ
and define the automorphism of torsion z in 90* by
2= (1 + 07 (1 + i) T-F=(0 + ™' (") yTa 0.

To derive the necessary modification of the locality ideal, we note that in the
scalar case JZ can be put as

N
Ji={ge|g=Y C@b—ba)d; % doa Q; a, bee A,
k=1

Supp a, ~ suppby,, N = 1, 2,...},

where by definition
R F=Qif.=0, 222
and the symbol ~ denotes mutual space-likeness, From this representation we de-

termine the 1deal JZ z of locality with torsion in the Borhers' algebra by the
following formula: ~°

N
Jiz= {ge Qlg= Z <, (8, bi —biay) dy; ¢p de = Q;
k=1 -
~ o~ . ~ - (5)
ap by ", suppa, ~suppb, N=1.2....}.
Correspondingly, we Formulate as follows the..condition for generalized loecal
commutativeness (locality with torsion):

Jl,;C:.’o, ( 6 )

Finally, the formulation of the spectral condition does not require any changes:
as in the scalar theory, we introduce the spectrality ideal, namely the right
ideal

-’,‘, = {?E Q‘olfn =0, fi‘,....;‘n P -..,p) =0}

in the region of the cone
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and impose the requirement Jac/ .

4, The functional W canonically defines therepresentation 1 of the algebra
Q ¥ in the Hilbert space 4, obtained as a completion of the factor space Q=Q%*/
on the norm generated by the scalar product in Q.

£, 5@) - WET viyve

—

The representation operators are unbounded closable operators in # having the
compact region Q and defined by

NHe@=:teh yview Vi@eQ.

The transform of the representation N{Q*)=%1s an Op¥ algebra 1n.theregion and
the involution N(N)—H(M*=MN+*()|, together with the cyclic vector &=E(e). It is
readily checked that the operators H(f) satisfy the system of Whiteman axioms.

Relativistic covariance. It follows from (3) and (4) that the ideal JO is

Poingare-invariant: J§M =J, for all (a Aed]l. Therefore, the representation I
is I #% —covariant, i.e., in 58 we have unambiguously defined operators U{a, A)
that provide the representation of &1

U NE[ =t 7Y, v MNes!, Teq;.

On account of (4), all the U(a, A) are unitary, and the cycllc vector &g (vacuum)
is Poincare-invariant.

Locality. As a consequence of the relativistic covariance, the automorphism
z of algebra RO* is realized in representation I by a unitary operator Z such that

vier Ze(® =&+~ @+ F%).
The operator Z provides a torsion transformation on the field operators H(f):
n@H-—-nde=zndz',

which 1s an automorphism of the Op¥* algebra £ . From (5) one readily gets that
condition (6) for the Whiteman functional leads to obedience to the axion of lo-
cality with torsion:

M@ n@q=0 vige " suppi~suppg.
and equality i1s understood upon region 2.

Spectrality. By analogy with the scalar theory, the condition for the
Whlteman functional leads to the standard formulation of spectrality for the
Tepresentation U(a, A):

UMD=EWWEWvWWHmCEP : ,

Therefore, the system of arbitrary-spin fields can be described in a compact
- fashion by means of a positive functional in Borhers' algebra, and thils descrip-
tion 1s completely equivalent to the Whiteman one.
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