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THE METHOD OF PROJECTION OPERATORS IN THE THEORY
OF PULSED NMR PROCESSES WITH SELECTIVE IRRADIATION

V. §. Tumanov

The method of projection operators is applied to the theory of pulsed nuclear
magnetic resonance processes with selective irradiation. The use of the projec-
tion operator method alone and in combination with the known one-transition
operator method is considered. In particular, general formulas are derived that
describe the evolution of the density operator in the case of arbitrary first-order
spectra.

1. INTRODUCTION

The theory of pulsed NMR processes reduces to calculating the density operator. The calculation is
broken up into consecutive stages corresponding to periods of pulse action and to periods of free evolution
of the nuclear system. The description of the wide-band pulse action is straightforward because the corre-
sponding Hamiltonian is linear and the transformation of the spin operators entering the density operator
is a transformation of rotation. The periods of free evolution are determined by a nonlinear Hamiltonian.
In [1] the method of projection operators was suggested and applied to obtain general formuias defining the
scalar interaction-induced evolution of spin operators for the case of arbitrary first-order spectra (such for
the most part are spectra observed with modern equipment with strong constant fields). To have a math-
ematical apparatus for calculating any pulsed process it remains to investigate pulse actions with selective
irradiation. This problem is considered in the present paper. As in [1], the method of projection operators is
used. Considered are two versions: the method of projection operators in combination with the well-known
method of one-transition operators (the method of a false spin) and the independent method of projection
operators. As a result, general formulas are derived that describe the evolution of the system under selective
irradiation (Section 4). The combined method (Section 3) is illustrated by the calculation of two well-known
effects. )

2. THE GENERAL FORMULATION OF THE METHOD
IN APPLICATION TO SELECTIVE IRRADIATION

Consider the evolution of the density operator under the action of a Hamiltonian % = Ho + V (in a
rotating coordinate system), where Hy is the spin Hamiltonian of the system, which has eigenvectors [z}, V

is the Interaction Hamiltonian with a variable field: V = —yH, I, and H; is the Hamiltonian of the variable
field. With selective irradiation is suffices to keep in the Hamiltonian V = ZP,-VP;, (P; are projection
ik

operators) its part

V' =PVP +PRVPA. (1)

It is assumed here that the frequency of the variable field is close to that of the single tramsition |1} — |2},
and, as a consequence of the relation yH; € |E; — Ei| other transitions are not excited. Because of the
limited size of the paper, the proof of the applicability of expression (1) is not presented here, but its meaning
is quite evident. Using the identity P = |i){i}, we obtain for (1) the formula

=vHL (1 L[2)(11) (2] + [2){1]). (2)

We assume that the frequency of the variable field is exactly at resonance with the transition |1} — |2},
which is equivalent to the fact that the energies in the rotating coordinate system coincide: Ey = E,. As a
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result, Ho contains the operator E(|1){1} +|2){2}) and commutes with V' and with the transformed density
operator I,. Therefore Hy does not aflect the result, and it suffices to calculate the expression

exp{—iV't}I, exp{iV’t}. (3)

The version with the (£} # E,) detuning was also calculated, but, for the sake of brevity, is not present
here.
To calculate {3J) it suffices to employ the expansion with respect to the projection operators:

EXP{%ﬁpﬂu} = Py(a12) + Pl(ﬂn)exp{%fqﬁ} + P.1(a12) exp{-%i(P}, (4)

where ¢ = 2vH,(1I;]2), @12 = |1){2| + i2){(1], and the projection operators for the eigenvalues of the
operator a2, which are equal to 0, 1, and —1, are given by the formulas

Po(ayz) = (1 - ar2)(1 + aiz2), Pi(a1s) = %au(au + 1), P_ {a12) = 'il;ﬂu(au - 1). (5)

If there are several transitions at resonance (when, e. g., the number of equivalent nuclei in a system is
more than one), then the original expression (1) must be supplemented with the corresponding projection
operators.

3. THE PROJECTION OPERATOR METHOD
IN COMBINATION WITH THE
ONE-TRANSITION OPERATOR METHOD

The operators iz = |i){k| are called one-transition operators. The one-transition operator method
(or the equivalent technique of false spin) in application to NMR was proposed in [2-5]. The original
idea belongs to Feynman et al. [6]. The term “false spin” arose because, e.g., the matrix of the operator
@12 = €12 + €21 in the basis |1}, |2) coincides with the Pauli matrix 1, and the operators —i(]1}(2} — |2}{1])
and {1){1| — [2){2| correspond to the other two Pauli matrices. In the calculation involving one-transition
operators it is convenient to use the identity ciz¢r; = cijfes. Then expressions (5) are brought to the form

1 1
Po=1-¢11-cam, Py = z(e11 + co2 + 12 + ¢n), Po1 = z(c11 + 23 — c12 ~ ¢21).
2 2

As an example, consider a two-spin system AX; the nuclei A and X will be denoted by the respective
indices 1 and 2. The states |[my, my} (where m, and m; are the values of the z-projections of the spins) are
indexed in the following way: |1) = |-1/2,-1/2}, [2) = [1/2,-1/2}, |3) = |~1/2,1/2}, and }4) = |1/2,1/2).
We calculate the density operator (3) for the selective transition |1} — |2). The calculation using expansion
(4) results in the formula:

F= exp{-;-icp(cm + cn)}h; eXP{-%ﬁP(cw +621)}

1 1 i. .
= 5(—633 + c4q) + (e +en)cosp + si(—cn +cig)sing. (6)

The formula takes into account that the transformation only affects the spin of the nucleus A: I, =
(1/2)(~c11 + 22 — ¢33 + caq), while the spin I, = (1/2)(—¢y; — ¢22 + ¢33 + c44) Temains unchanged. The
presence of the operators cy; and ¢17 in () testifies to the appearance of the one-quantum coherence in the
1 — 2 transition, which corresponds to the magnetization precession at the frequency of this transition.

If after that a second selective pulse is applied to the system, this time at the frequency of the 2 — 4
transition, the calculation leads to the appearance of one-transition operators in the density operator, which
in this case correspond to the two-quantum coherence (c14 and ¢4;). If that second pulse was a #-pulse, the
operators of the one-quantum ccherence disappear.
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‘We consider in more detail the effect of the second wide-band pulse at the subspectrum X frequencies,
i.e., on the 2 — 4 and 1 — 3 transitions. The problem reduces to calculating the expression

exp{ivloz } F exp{—ixIzc}. (1)

Here it suffices to use the expansion exp{ixJ.} = cos(x/2)} + 2iI- sin{x/2) and the corresponding complex
conjugate expression (they are valid for the spin 1/2). For brevity, we immediately set x = = (a w-pulse),
then (7) is reduced to the form 413, FI;;, and, by virtue of (6), the last expression results in

1 . .

3 [~e11 + cas + (—cas + caa) cOSp +i(caq — c53) sin ]

Here the appearance of the operators cgy and cyus instead of ¢y2 and ¢ in formula (6) is characterized as
transfer of coherence, i.e., the transformation of the magnetization that precesses with frequency wy — J/2
into magnetization precessing with frequency wy + J/2.

The caleulations by the proposed technique, presented here without details, are rather cumbersome
even for the simplest version {(a two-spin system)} considered here. In the next section we propose another
procedure, which does noi involve one-transition operators and which makes particularly noticeable the
advantages of the use of projection operators.

4, THE PROJECTION OPERATOR METHOD AS APPLIED
TO AN ARBITRARY FIRST-ORDER SPECTRUM

We consider an arbitrary subspectrum {Iy, Iz} of the spectrum A, X; and calculate the result of selective
irradiation at the frequency of the subspectrum A corresponding to the transitions {m, — 1, my) — [my, my)
(the projection m; is fixed, and the transition frequencies are the same for all values of m1). It is clear that
in this case the operator realizing the transition is [y Pp,, where P,,, = P,,.(Iz;) is a projection operator.
If at an intermediate time the density operator is a linear combination of products of spin operators, then
to determine the effect of a selective pulse it suffices to examine its effect on the operators I, and I, and
also on I, and I, (it does not affect the other operators). The solution to this problem for Iy, and Iy, is
given by the relation

exp{i@liz Pmy 1z exp{—i@lizPm,} = [1:{1 = Pm,) + (L1, cos @ + 1y sin @) Py, (8)
exp{iwlis P, M1y exp{—ipliz Pm,} = Liy(1 = Pn,) + (f1y cos ¢ — I1s sin @) Pm,. (9)

The proof of (8) and (9) can be obtained, for instance, by using the commutators

[Ila'Prng: Ilz] = -iIly qu:

. 10
[IIJ'PHI1:Ily] = tILthg- ( )

Introducing the notation I; () and I1y(yp) for the left-hand sides of (8) and (9) and using the commutators
(10), we obtain for [),;(p) and I1y4(yp) a system of first-order differential equations whose solution with the
corresponding initial conditions results in identities {8) and (9).

However, a still simpler derivation of (8) and (9) can be performed by introducing the projection
operators Py and P; as functions of the projection operator Pn, whose eigenvalues are (¢ and 1. Then we
have exp{ipls Pm,} = Po + Py exp{iwli.}, where P, = 1~ P, and P, = P,,,. Using this expression and
its complex conjugate and also the identity P,ﬁ, = Pp,, and the ordinary rotation formulas we immediately
obtain (8) and (9).

In a similar way we prove the relation

exp{iileszg}I?: exP{—i(PIISPmn} = Ipz = Py Doe = 122 P,

. . 11
+ Po, Do explivlis } + Too P, exp{—ihia}, (11)

and then substitute the expansion

expliphs} =Y P, (is) exp{ipm;}

™y
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and the corresponding complex conjugate expression into (11). In the derivation of formula (11) the identity
Pn,I2cPm, = 0 is taken into account. The formula for I», is obtained from (11) by replacing the indices
“22” by “2y7?.

Formulas (8) and (9) can also be generalized to the subspectra {I},I,,...,I,} for an arbitrary first-
order spectrum of systems consisting of an arbitrary number of groups of equivalent nuclei. In this case we
have

exp{i‘PIk:rP’}Ik: exP{_iﬁaIkxPl} = Li;(1 = P+ (lgs cosp + Tiy sin e)P,
exp{iplis P' Yy exp{~iplie P’} = Ity(1 = P') + (Iiy cos @ — Iz sing) P/,

where

P= H Ppy;.
J(#%&)

At the end of Section 3 it was shown that the effect on the AX system of a wide-band pulse aiter a
selective puise leads to transfer of coherence. The resulting general formula makes it possible to obtain a
generalization to the case of an arbitrary spectrum. Indeed, as follows from (8), for ¢ = x/2 the original
density operator I3, turns into [y, Pp,. The action of the subsequent wide-band w-puise at the frequencies
of the second subspectrum transforms Iz, into —Is,, i.e., Pm,{I2:) turns into Pn,(—12;). From the explicit
expression

Iz, — m’2
Py (le:) = H —_—
mi(#my) 02 T 2

for the projection operator it follows that Po,(—Iz;) = P_m,{f2;). Thus, the magnetization precession at
a frequency wy + Jmq (where J is the spin-spin coupling constant) is transformed into precession with a
frequency wy — Jma. A similar effect also exists in the case of a system with an arbitrary number of groups
of equivalent nuclei.

The author expresses his gratitude to Yu. S. Konstantinov for valuable discussion.
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