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THE METHOD OF PROJECTION OPERATORS IN THE THEORY 

OF PULSED NMR PROCESSES WITH SELECTIVE IRRADIATION 

V. S. Tumanov 

The method of projection operators is applied to the theory of pulsed nuclear 
magnetic resonance processes with selective irradiation. The use of the projec
tion operator method alone and in combination with the known one-transition 
operator method is considered. In particular, general formulas are derived that 
describe the evolution of the density operator in the case of arbitrary first-order 
spectra. 

1. INTRODUCTION 

The theory of pulsed NMR processes reduces to calculating the density operator. The calculation is 
broken up into consecutive stages corresponding to periods of pulse action and to periods of free evolution 
of the nuclear system. The description of the wide-band pulse action is straightforward because the corre
sponding Hamiltonian is linear and the transformation of the spin operators entering the density operator 
is a transformation of rotation. The periods of free evolution are determined by a nonline;i.r Hamiltonian. 
In [1] the method of projection operators was suggested and applied to obtain general formulas defining the 
scalar interaction-induced evolution of spin operators for the case of arbitrary first-order spectra (such for 
the most part are spectra observed with modern equipment with strong constant fields). To have a math
ematical apparatus for calculating any pulsed process it remains to investigate pulse actions with selective 
irradiation. This problem is considered in the present paper. As in [1], the method of projection operators is 
used. Considered are two versions: the method of projection operators in combination with the well-known 
method of one-transition operators (the method of a false spin) and the independent method of projection 
operators. As a result, general formulas are derived that describe the evolution of the system under selective 
irradiation (Section 4). The combined method (Section 3) is illustrated by the calculation of two well-known 
effects. 

2. THE GENERAL FORMULATION OF THE METHOD 
IN APPLICATION TO SELECTIVE IRRADIATION 

Consider the evolution of the density operator under the action of a Hamiltonian 1f. = 1(.0 + V (in a 
rotating coordinate system), where 1f.o is the spin Hamiltonian of the system, which has eigenvectors Ii), V 
is the interaction Hamiltonian with a variable field: V = -1 Hilz, and H 1 is the Hamiltonian of the variable 
field. With selective irradiation is suffices to keep in the Hamiltonian V = L: P; VP• ( P; are projection 

i,k 
operators) its part 

(1) 

It is assumed here that the frequency of the variable field is close to that of the single transition 11) - 12), 
and, as a consequence of the relation 1H1 <: IE; - E•I other transitions are not excited. Because of the 
limited size of the paper, the proof of the applicability of expression (1) is not presented here, but its meaning 
is quite evident. Using the identity P; = li)(il, we obtain for (1) the formula 

-1H1(11Izl2)(11)(21 + l2}(11J. (2) 

We assume that the frequency of the variable field is exactly at resonance with the transition I 1} - 12), · 
which is equivalent to the fact that the energies in the rotating coordinate system coincide: E1 = E2 • As a 
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result, 'Jlo contains the operator E(ll)(ll + 12)(21) and commutes with V' and with the transformed density 
operator I,. Therefore 1!0 does not a.tfect the result, and it suffices to calculate the expression 

exp{-iV't}I, exp{iV't}. (3) 

The version with the (E1 "# E2) detuning was also calculated, but, for the sake of brevity, is not present 
here. 

To calculate (3) it suffices to employ the expansion with respect to the projection operators: 

exp{ ~icpo12} = Po(o12) + P1(012)exp{ ~icp} + P-1(012) exp{-4icp }, (4) 

where cp = 2rH1(1IIsl2)t, 012 = 11)(21 + l2)(1f, and the projection operators for the eigenvalues of the 
operator 012, which are equal to O, 1, and -1, are given by the formulas 

Pa(a12) = (1 - a12)(l + a12), (5) 

If there are several transitions at resonance (when, e. g.j the number of equivalent nuclei in a system is 
more than one), then the original expression ( 1) must be supplemented with the corresponding projection 
operators. 

3. THE PROJECTION OPERATOR METHOD 
IN COMBINATION WITH THE 

ONE-TRANSITION OPERATOR METHOD 

The operators c;" = li)(kl are called one-transition operators. The one-transition operator method 
(or the equivalent technique of false spin) in application to NMR was proposed in [2-5]. The original 
idea belongs to Feynman et al. [6]. The term "false spin" arose because, e.g., the matrix of the operator 
a12 = c12 + c21 in the basis 11), 12) coincides with the Pauli matrix 0"1, and the operators -i(l1)(2l - l2)(11) 
and 11)(11- 12)(21 correspond to the other two Pauli matrices. In the calculation involving one-transition 
operators it is convenient to use the identity c;1Ck'J = c;;6u•. Then expressions (5) are brought to the form 

Po = 1 - cu - c22, 

As an example, consider a two-spin system AX; the nuclei A and X will be denoted by the respective 
indices 1 and 2. The states lmi. m2) (where m1 and m2 are the values of the z-projections of the spins) are 
indexed in the following way: 11) = l-1/2, -1/2), 12) = ll/2,-1/2), 13) = l-1/2, 1/2), and f4) = 11/2, 1/2). 
We calculate the density operator (3) for the selective transition 11) -12). The calculation using expansion 
( 4) results in the formula: 

F =exp{ ~icp(•12 + c2i) }1,, exp{-~icp(c12 + •21)} 
= ~(-c33 + c44) +~(-cu+ c22) coscp + ~i(-c21 + c12)sincp. (6) 

The formula takes into account that the transformation only a.tfects the spin of the nucleus A: I,, = 
(1/2)(-cu + c22 - C33 + c44), while the spin I2, = (l/2)(-c11 - •22 + c33 + c44) remains unchanged. The 
presence of the operators c21 and c12 in ( 6) testifies to the appearance of the one-quantum coherence in the 
1 - 2 transition, which corresponds to the magneti2ation precession at the frequency of this transition. 

If after that a second selective pulse is applied to the system, this time at the frequency of the 2 - 4 
transition, the calculation leads to the appearance of one-transition operators in the density operator, which 
in this case correspond to the two-quantum coherence (c14 and 041). If that second pulse was a .. -pulse, the 
operators of the one-quantum coherence disappear. 
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We consider in more detail the effect of the second wide-band pulse at the subspectrum X frequencies, 
i.e., on the 2 ._ 4 and 1 ._ 3 transitions. The problem reduces to calculating the expression 

(7) 

Here it suffices to use the expansion exp{ixI,..} = cos(x/2) + 2iJ,..sin(x/2) and the corresponding complex 
conjugate expression (they are valid for the spin 1/2). For brevity, we immediately set x = " (a tr-pulse), 
then (7) is reduced to the form 4I2zF I2., and, by virtue of ( 6), the last expression results in 

~[-cu+ c22 + (-c33 + c44)coscp + i(c34 - c43)sincp]. 

Here the appearance of the operators c34 and c43 instead of c12 and c21 in formula (6) is characterized as 
transfer of coherence, i.e., the transformation of the magnetization that precesses with frequency w1 - J /2 
into magnetization precessing with frequency w1 + J /2. 

The calculations by the proposed technique, presented here without details, are rather cumbersome 
even for the simplest version (a. two-spin system) considered here. In the next section we propose another 
procedure, which does not involve one-transition operators and which makes particularly noticeable the 
advantages of the use of projection operators. 

4. THE PROJECTION OPERATOR METHOD AS APPLIED 
TO AN ARBITRARY FIRST-ORDER SPECTRUM 

We consider an arbitrary subspectrum {Ii. I2} of the spectrumA,X9 and calculate the result of selective 
irradiation at the frequency of the subspectrum A corresponding to the transitions lm1 - 1, m2 ) - lmi. m.) 
(the projection m2 is fixed, and the transition frequencies a.re the same for all values of mi). It is clear that 
in this case the opera.tor realizing the transition is J1;Pm,, where Pm, = Pm,(I.,) is a. projection opera.tor. 
If at an intermediate time the density opera.tor is a. linear combination of products of spin opera.tors, then 
to determine the effect of a selective pulse it suffices to examine its effect on the opera.tors I1z and I1• and 
also on I2z and 12, (it does not affect the other opera.tors). The solution to this problem for l1z and 11, is 
given by the relation 

exp{icpl1zPm,}li, exp{-icpl1;Pm,} = Iiz(l - Pm,)+ (I1z coscp + I1• sincp)Pm,, 

exp{icpl1sPm,}I1, exp{-icpl1zPm,} = I1,(l - Pm,)+ (I1, coscp- I1, sincp)Pm,-

The proof of (8) and (9) can be obtained, for instance, by using the commutators 

[I1zPm,,J1z] = -iI,,Pm,, 

[I1zPm,,11,] = ili,Pm,-

(8) 

(9) 

(10) 

Introducing the notation Iiz(cp) and I1y(cp) for the left-hand sides of (8) and (9) and using the commutators 
(10), we obtain for l1z(cp) and l1y('P) a system of first-order differential equations whose solution with the 
corresponding initial conditions results in identities (8) and (9). 

However, a still simpler derivation of (8) and (9) can be performed by introducing the projection 
opera.tors Po and P1 as functions of the projection opera.tor Pm, whose eigenvalues are 0 and L Then we 
have exp{icpltzPm,} =Po+ P1 exp{icpfiz}, where Po= 1- P,,., and Pi= Pm,- Using this expression and 
its complex conjugate and also the identity P!, = Pm, and the ordinary rotation formulas we immediately 
obtain (8) and (9). 

In a similar way we prove the relation 

exp{ icpl1zPm,}l2z exp{-icpl1zPm,} = l2z - Pm, I,.. - l2zPm, 

+ Pm,I2zexp{icpl1z} +I,..P.,, exp{-icpf,z}, 

and then substitute the expansion 

exp{icpl1z} = LPm,(ltz)exp{icpm1} ... 
3 
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and the corresponding complex conjugate expression into (11). In the derivation of formula (11) the identity 
Pm,I-,,,Pm, = 0 is taken into account. The formula for 12, is obtained from (11) by replacing the indices 
"2z" by "2y". 

Formulas (8) and (9) can also be generalized to the subspectra {Ji,12 , ••• , In} for an arbitrary first
order spectrum of systems consisting of an arbitrary number of groups of equivalent nuclei. In this case we 
have 

exp{i<pI<zP'}I., exp{-i<pJ<zP'} = Ic.(l - P') +(I., cos 'I'+ I;, sin <p)P', 

exp{i<pJ<zP'}J<• exp{-i<pJ<zP'} = Icy(l-P') +(I;, cos<p-J.,sin<p)P', 

where 
P' = II Pm;• 

j(;te) 

At the end of Section 3 it was shown that the effect on the AX system of a wide-band pulse after a 
selective pulse leads to transfer of coherence. The resulting genera.I formula makes it possible to obtain a 
generalization to the case of an arbitrary spectrum. Indeed, as follows from (8), for 'I' = tr/2 the original 
density operator I,, turns into 11,Pm,. The action of the subsequent wide-band tr-pulse at the frequencies 
of the second subspectrum transforms 12z into -l2z, i.e., Pm,(12,) turns into Pm,(-12, ). From the explicit 
expression 

for the projection operator it follows that Pm,(-12,) = P-m,(12,). Thus, the magnetization precession at 
a frequency "'' + J m2 (where J is the spin-spin coupling constant) is transformed into precession with a 
frequency "'' - J m,_ A similar effect also exists in the case of a system with an arbitrary number of groups 
of equivalent nuclei. 

The author expresses his gratitude to Yu. S. Konstantinov for valuable discussion. 
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