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The anisotropy of hopping conductivity of quasi-one-dimensional systems re
lated to the convoluted shape of optimal carrier paths is considered. It is 
demonstrated that for systems described in the framework of the R-percolation 
model the specific features of the carrier path shape do not lead to exponential 
anisotropy of the conductivity. 

It is well known that the conductivity of disordered systems can be often evaluated using methods of the 
percolation theory. In particular, the problem of finding the hopping conductivity for a system of sites with 
random positions and energies can be reduced to the bond problem on random sites. The main exponential 
temperature and concentration dependences of the system conductivity in this case are determined by the 
critical value of the transition rate between localized states, corresponding to the appearance in the system 
of an infinite cluster of conjugated bonds. Owing to the fact that with a uniform distribution of local centers 
(sites) in space the percolation threshold is unique even for a problem with anisotropic transition rates, in 
this case there is no anisotropy of the exponential factor of the conductivity [l]. At the same time, for 
systems with a nonuniform spatial distribution of sites the situation can be essentially different. In quasi
two..dimensional systems, two percolation thresholds may exist, giving rise to the exponential.anisotropy of 
the hopping conductivity [2]. For quasi-one-dimensional systems with a weak coupling between the wires, for 
which the percolation threshold is unique, different exponential temperature variations for the longitudinal 
and transverse hopping conductivities were also obtained in [3]. Using the percolation approach, we shall 
discuss the possibilities of the existence of exponential anisotropy of the hopping conductivity for some model 
quasi-one-dimensional systems with a unique percolation threshold. 

Specific features of the situation considered can be illustrated with a well-known model of anisotropic 
percolation on a regular lattice (4]. For a two-dimensional anisotropic system the percolation threshold is 
unique; the boundary of the percolation region on the plane (1111, 11.1.) is determined by the equation 

'IJI + '1.1. = 1, ( 1) 

where 'Ill• 11.1. are the probabilities of formation of longitudinal and transverse bonds. The probability of 
formation of a chain of s longitudinal bonds is P, = 'Ii\ ( 1 - '111) (l: P, = 1) and the average number of bonds 

• in the chain is 

' 
For one-dimensional systems there is no percolation (for '1.1. = 0 one has 'Ill = 1); percolation appears when 
the number of transverse bonds is sufficiently large. The average number of transverse bonds joining a 
longitudinal chain with neighboring ones is v.1. = ZS11.1.; this equation takes into account that the number of 
neighboring wires is two. The percolation sets in when v.1. = v,; according to Eq. (1), v, = 2. 

The onset of percolation both in longitudinal and in the transverse directions is due to the inter-chain 
transitions. For a strongly anisotropic system (11.1./1111 << 1) the average length of the longitudinal fraction 
of a chain is large and the average numbior of transverse bonds is small, so the percolation paths include 
prolonged longitudinal sections with rare transverse connections. Accordingly, near the percolation threshold 
the shortest chains of bonds connecting the opposite boundaries of a macroscopic sample have markedly 
different lengths in the longitudinal and transverse directions. Assuming that the bonds correspond to 
resistances of equal magnitude, one finds that the transverse resistance is about (1 - '111)-1 times greater 
than the longitudinal one. 
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One might expect that the specific shape of percolation paths considered above would also be of 
importance for problems of hopping conductivity. Consider a simple model of a quasi-one-dimensional system 
with sites randomly distributed on wires that are periodically arranged in a plane. The problem of hopping 
conductivity of such a system is equivalent to the calculation of the overall resistance of a Miller-Abrahams 
random network of resistances R...n connecting the sites, 

R...n =Ro exp{2rmn/ro}, 

where Ro is the pre-exponential factor taken to be constant for simplicity, ro is the localization radius, and 
l"mn is the inter-site distance. Let n be the density of site distribution along the wires and the inter-wire 
distance d is greater than the average inter-site distance on a wire n-1• Then the problem is reduced to 
the bond problem, a bond being defined for a given r by l"mn < r. For a quasi-one-dimensional system the 
percolation depends on the presence of transverse bonds between the wires; for r < d there are no such bonds 
and there is no percolation. The infinite cluster of conjugated bonds appears only for r > d. The percolation 
threshold can be then determined from the condition 11 .J. = lier, where 11 .J. is the average number of transverse 
bonds connecting the fragment of the path lying on the wire with neighboring wires and lier is the critical 
value of this number for a problem with random sites. Since the average length of such a fragment is large, 
its resistance can turn out to be large compared to the resistance of transverse bonds. 

Using the Poisson distribution for sites on the wires, one can find: 
the probability of finding a chain of s sites with nearest-neighbor distances smaller than r, P, = 

[l - exp{-nr}]' exp{-nr}; 
the average number of sites in the path fragments on the wires, 

i= l:sP, = [1-exp{-nr}]exp{nr} 

' 
(it is exponentially large for nr > > 1 ); 

the average resistance connecting the neighboring sites on a wire, 

- j nro exp{-nr}- exp{-2r/ro} 
R=n drRoexp{2r/ro}exp{-nr}=Roexp{2r/ro} 

2 
{ } . 

nro - 1 - exp -nr 

The average number of transverse bonds for the considered fragment of the chain of bonds is 11 .J. = 
4inv'r2 - d2. The condition 11.J. =lier determines the percolation threshold when the infinite cluster appears: 

Thus 
e = r, -d: (11;./32dn'}exp{-2nd} 

(this expression is valid for 2ne <: 1). One can see that for nd > 1 the critical value r, is close to d and the 
resistance of transverse bonds is close to R(tr) =Ro exp{2d/ro}. 

The shape of the conduction paths, lying in the infinite cluster, is similar to that considered above 
for the problem of anisotropic percolation on a lattice. One might expect large anisotropy when the total 
resistance of a fragment of the chain of bonds lying on the wire 

Ji'l = sR =Ro exp{2d/ro}[nro/(nr0 - 2)][exp{(n - 2/ro)d} - l] 

exceeds the resistance of a transverse bond R(tr). This is true when nr0 > 1. In this case in the immediate 
neighborhood of the percolation threshold the resistance of the transverse percolating chain of bonds lying 
inside the infinite cluster is greater than the resistance of a longitudinal chain with the same distance 
between its ends by [nr0 /(nro - 2)][exp{(n -2/ro)d} - l] times. One can show however that for the model 
considered this does not give rise to exponential anisotropy of the conductivity. In fact, the total resistance 
of a transverse chain of bonds is appreciably decreased when it is straightened by transverse resistances 
connecting sites of neighboring wires with inter-site distances of the order r = v'd2 + An-2, where A is a 
constant of the order of unity. As nd > 1, one has r: d + A/(2n2d) and the resistances of the shortcutting 
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bonds differ from R(tr) by a factor of exp{A/n2 rod}. As nro ::> 1, those resistances should also be included 
into the critical subnetwork [l] which is defined by the conditions d < r < d+ro, and there is no exponential 
anisotropy of the conductivity. This indicates that the procedure of independent optimi2ation of transverse 
hops used in [3] is inapplicable to the systems under consideration described in the framework of the model 
of R-percolation. 
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