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DIFFERENTIAL-GEOMETRIC CRITERION FOR KINEMATIC
INTEGRABILITY OF EQUATIONS WITH OPERATORS FROM
su(1,1) AND su(2)

A. Yu. Kolesnik

A necessary and sufficient condition for kinematic integrability of equations
with operators belonging to the Lie algebras su(1l,1) and su(2} is proved.
The suggested criterion is related to differential-geometric consideration of the
corresponding classes of kinematically integrable equations and is based on the
G-representation of partial differential equations.

THE NOTICN OF G-CLASS

Let o
ds® = gijdztdz? (gl =z, z2=1)

be a metric on a smooth two-dimensional manifold. We assume that its coeflicients can be represented in
the form gi; = gij(u, 2z, Uty Yz, .. .3 T,t) = gij[u], where u(z,t) is an unknown function. If the Gaussian
curvature K(z,t) is given, then the Gauss equation (see, e.g., [1]) is a generally nonlinear differential
equation with respect to the function u(z,t),

flu(=z, 8)] = 0. (1)

?, g is called a G-representation of equation (1).
Equations admitting G-representations are said to belong to the G-class. The G-representations {G-class)
corresponding to the Gaussian curvature K = —1 are referred to as the A®-representations (AZ-class).

The notion of A2-class, which has comparatively recently been introduced by Poznyak and Popov (2, 3],
is a connecting link between nonlinear equations and the differential geometry of two-dimensional smooth
manifolds.

In what follows, we denote the G-representations corresponding to constant nonzero Gaussian
curvatures as G{f[u] = 0}, K = const # 0, representations.

In this case, the corresponding metric tensor g;; =

REPRESENTATION OF ZERO CURVATURE

Consider the problem
¥ = U4,
¢t = V'tb:

where U and V are the (2 x 2)-matrix operators and 4 = (:’bbl ) is the two-dimensional vector-function.
2
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The solvability condition for this system is obtained by cross differentiation and has the form
U -V +[U,V]=0. (2)

Equation (2) is called a zero curvature representation equation. If the operators U and V analytically
depend on a certain parameter £, then the equations representable in form (2) are called kinematically
integrable equations [4].

CONSTRUCTING THE ZERO CURVATURE REPRESENTATION OPERATORS
GIVEN THE G{F[U] = 0}, K = const # 0, REPRESENTATION

Given a G{f{u] = 0}, K = const # 0, representation of a certain differential equation
flu] = 0. (3)

In 5], the theorem stated below is proved. It relates the kinematic integrability [4] of equations to their
membership in the G-class and allows us to construct the spectral-evolution operators I/ and V by the
G-representation (K = const # 0) of equation (3} so that the zero curvature representation equation for U
and V coincides with the corresponding Gauss equation.

Theorem 1. Given a G-representation of equation (3), i.e., the corresponding metric tensor g;;[ul,
and the Gaussian curvature K = const # 0.

Then

1. The operators

%& %\/—K\/E exp(i6*+)

U=
%\/—K VE exp(—ift) —%E
and . .
X% =V=EVGexp(i0™)
2 2
V= ) . ,
sV=EVGexp(-if") —%b
where 1 F 1 (FG, FE
6;{: — el - ~_ z - T _
:I:zarccos(m), a 2\/5[2G 5E + F, Eg],

3= —F¢+E,], w=EG— F?,

1 [FG‘g“FEf_
/w26  2F

satisfy the zero curvature representation equation
U -V, +[UV]=0. (4)

2. Equation (4) coincides with the Gauss equation flu) = 0 corresponding to the given G{f[u] = 0},
K = const # 0, representation,

3. The operators U and V are unigue to a gauge transformation.

Theorem 1 implies that the set of kinematically integrable equations includes the set of all equations
that admit G{f[u] = 0}, K = const # 0, representations.

CONSTRUCTING G-REPRESENTATIONS GIVEN ZERO CURVATURE OPERATORS

Consider the problem inverse to that discussed above. Namely, let us construct the inverse
representation for a metric tensor for the given zero curvature representation operators.
Theorem 2. 1. Given operators U = Ulu(z, t)] and V = V[u(z, )] of the form

Ull U12 Vll VZI
U= (U“ ——U“) , V= (V“ —V“)
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satisfying the zero curvalure representation equation
Up— V. +[U,V]=0 ()

for a certain equation flu(z,t)] = 0.

2. Let one of the following conditions be fulfilled:

{a) U,V € su(2),

(b)) U,V € su(l,1).

Then

1°, There exists a G-representation of the equation flu(z,t)] = 0 for a Gaussien curvature K =
const # 0, where K > 0 in case (a) and K < 0 in case (b).

2¢. The (G-representation under consideration is expressed by the metric
2 22(U12V21 + U21v12) 4V12V21

127721
_WUT e dz dt — ———dt?. (6)

2 _
ds” = K K K

A DIFFERENTIAL-GEOMETRIC CRITERION FOR KINEMATIC INTEGRABILITY

Let us denote the set of kinematically integrable equations with matrix operators U,V € su(l,1)
(U,V € su(2)) by P,u(1,1) (Pau(z))- The following inclusions are obvious corollaries to Theorem 2:

P,u(1,1) C G{K = const < 0},

(7)
P2y C G{K = const > 0}.
Theorem 1 gives the inverse inclusions
Py 2 G{K = const < 0},
(8)

P,u(2) O G{K = const > 0}.

Assertions (7) and (8) imply the equivalence of P,u(1,1) to G{K = const < 0} and of P,y to
G{K = const >)}.

These equivalences of the corresponding classes make it possible to state the following criterion for
kinemadtic integrability of equations.

Theorem 3. An equation f[u(z,t)] = 0 belongs to the class of kinematically integrable equations with
matriz operators U,V € su(l,1) (U, V € su(2)} if and only if the equation flu(z,1)] = 0 belongs fo the
G{K = const < 0}-class (G{K = const > 0}-class).

Theorem 3 is a differential-geometric criterion, because it gives necessary and sufficient conditions for
kinematic integrability of equations.

The author is grateful to S. A. Zadadaev for useful discussions.
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