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DIFFERENTIAL-GEOMETRIC CRITERION FOR KINEMATIC 
INTEGRABILITY OF EQUATIONS WITH OPERATORS FROM 

su(l,1) AND su(2) 

A. Yu. Kolesnik 

A necessary and sufficient condition for kinematic integrability of equations 
with operators belonging to the Lie algebras su(l, 1) and su(2) is proved. 
The suggested criterion is related to differential-geometric consideration of the 
corresponding classes of kinematically integrable equations and is based on the 
G-representation of partial differential equations. 

THE NOTION OF G-CLASS 

Let 
ds 2 == g;;dx;dxi, (x 1 == x, x2 == t) 

be a metric on a smooth two-dimensional manifold. We assume that its coefficients can be represented in 
the form Uij = g1;(v., Ux, Ut, ti.xx, .•. ; x, t) = Yi;[u]i where u(x, t) is an unknown function. If the Gaussian 
curvature K(x, t) is given, then the Gauss equation (see, e.g., [1]) is a generally nonlinear differential 
equation with respect to the function u(x, t), 

f[u(x, t)] == 0. {1) 

In this case, the corresponding metric tensor g;; == (~ ~) is called a G-representation of equation (1). 

Equations admitting G-representations are said to belong to the G-class. The G-representations (G-class) 
corresponding to the Gaussian curvature K;:;::: -1 are referred to as the A2-representations (A2-class). 

The notion of A2-class, which has comparatively recently been introduced by Poznyak and Popov [2, 3], 
is a connecting link -between nonlinear equations and the differential geometry of two-dimensional smooth 
manifolds. 

In what follows, we denote the G-representations corresponding to constant nonzero Gaussian 
curvatures as G{/[u] == O}, K = const of O, representations. 

REPRESENTATION OF ZERO CURVATURE 

Consider the pro bl em 

{
efix == U,P, 

.p, == v efi' 

where U and V are the {2 X 2)-matrix operators and efi == ( ~~ ) is the two-dimensional vector-function. 
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The solvability condition for this system is obtained by cross differentiation and has the form 

U, - V, + [U, V] = 0. (2) 

Equation (2) is called a zero curvature representation equation. If the operators U and V analytically 
depend on a certain parameter e, then the equations representable in form (2) are called kinematically 
integrable equations [4]. 

CONSTRUCTING THE ZERO CURVATURE REPRESENTATION OPERATORS 
GIVEN THE G{F[UJ = O}, K;;; canst# O, REPRESENTATION 

Given a G{!(u] = O}, K = const op 0, representation of a certain differential equation 

f[u] = 0. (3) 

In (5], the theorem stated below is proved. It relates the kinematic integrability (4] of equations to their 
membership in the G-class and allows us to construct the spectral-evolution operators U and V by the 
G-representation (K = const op 0) of equation (3) so that the zero curvature representation equation for U 
and V coincides with the corresponding Gauss equation. 

Theorem 1. Given a G-representation of equation (3), i.e., the corresponding metric tensor g;j[u], 
and the Gaussian curvature K = const op 0. 

Then 
1. The operators 

and 

V= 

where 

-b 

[ 

i-

~v'=K'~exp(-i9-) 

jn<~;"'"'}] 

~v'=K'~exp(i9-)l , 
,_ 

--b 
2 

9± 1 ( F ) _ 1 [FG, FE, l = ±2 arccos ,fEG , a= 2VW 2G - 2E + F, - Et , 

-b _ 1 [ FG, FE, ,, ] EG 2 - 2v'iii 2G - 2E - ,,, + E, ' w = - F ' 

satisfy the zero curvature representation equation 

U,-V, + [U, V] = O. (4) 

2. Equation (4) coincides with the Gauss equation f[u] = 0 corresponding to the given G{f[u] = O}, 
K = const op 0, representation. 

3. The operators U and V are unique to a gauge transformation. 
Theorem 1 implies that the set of kinematically integrable equations includes the set of all equations 

that admit G{![u] = O}, K = const op O, representations. 

CONSTRUCTING G-REPRESENTATIONS GIVEN ZERO CURVATURE OPERATORS 

Consider the problem inverse to that discussed above. Namely, let us construct the inverse 
representation for a metric tensor for the given zero curvature representation operators. 

Theorem 2. 1. Given operators U = U[u(:x, t)] and V = V[u(:x, t)] of the form 

(
u11 

U= u•• U'2) 
-u11 , (

V" 
V= y21 

v••) 
-V" 
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satisfying the zero curvature representation equation 

U,-V,+[U,V]=O 

for a certain equation f[u(x, t)] = 0. 
2. Let one of the following conditions be .fulfilled: 
(a) U, VE su(2), 
(b} U, VE su(l, 1). 
Then 

Vol. 55, No.a 

(5) 

1°. There exists a G-representation of the equation J[u(x, t)] = 0 for a Gaussian curvature K = 
const op 0, where K > 0 in case (a) and K < 0 in case {b). 

2°. The G-representation under consideration is expressed by the metric 

ds2 = 
4u12u21 2(u12v21 + u21v12) 4v12v21 

K dx2 
- 2 K dx dt - K dt2

• (6) 

A DIFFERENTIAL-GEOMETRIC CRITERION FOR KINEMATIC INTEGRABILITY 

Let us denote the set of kinematically integrable equations with matrix operators U, V E su(l, 1) 
(U, VE su{2)) by P,u(l,l) (P,.(2))· The following inclusions are obvious corollaries to Theorem 2: 

P,u(l,1) c; G{K = const < O}, 

P,u(2) c; G{K = const > O}. 

Theorem 1 gives the inverse inclusions 

P,.(1,1) 2 G{K = const < O}, 

P,.(2) 2 G{ K = const > O}. 

(7) 

(8) 

Assertions (7) and (8) imply the equivalence of P,u(l,l) to G{K = const < O} and of P,u(2) to 
G{K = const >)}. 

These equivalences of the corresponding classes make it possible to state the following criterion for 
kinematic integrability of equations. 

Theorem 3. An equation J[u(x, t)] = 0 belongs to the class of kinematically integrable equations with 
matrix operators U, V E su(l, 1) (U, V E su(2)) if and only if the equation f[u(x, t)] = 0 belongs to the 
G{K = const < O}-class (G{K = const > O}-class). 

Theorem 3 is a differential-geometric criterion, because it gives necessary and sufficient conditions for 
kinematic integrability of equations. 

The author is grateful to S. A. Zadadaev for useful discussions. 
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