
Moscow University Vestnik Moskovskogo 
Physics Bulletin Universiteta. Fizika 
Vol. 59, No. 4, pp. 60-64, 2004 UDC 539.12.01 

FERROMAGNETIC STATE OF THE SZ7(2)-VACUUM 

V. Ch. Zhukovskii and О. V. Tarasov 

E-mail: zhukovsk@phys.msu.su 

The conditions for the ferromagnetic state of the chromomagnetic vacuum to 
exist are considered. It is shown that tachyonic modes can condense into a 
spatially uniform state if the length of the chromomagnetic field is limited. The 
problem of the phase transition between the ferromagnetic and superconducting 
states is considered. 

1. Gauge configurations, satisfying the Yang-Mills equations and providing local minima of the gauge 
action, are of great importance for the explanation of various non-perturbative phenomena in quantum 
theory of non-Abelian fields. One of these solutions is a constant chromomagnetic field [1]. It was shown 
in [2] that, for certain densities, the state of quarks interacting with the gauge field is energetically more 
advantageous, when they occupy Landau levels in a nonzero chromomagnetic field ("ferromagnetic" state) 
than when they are inside the Fermi sphere in the absence of a field. However, a constant chromomagnetic 
field, though being a solution of the Yang-Mills equations, does not correspond to a minimum of the action 
due to tachyonic modes present in the excitations about this field. This problem has been studied in a 
number of papers ( [2, 3] are among the recent studies). In this paper, attempt is made to study the phase 
transition between the ferromagnetic state of a vacuum and the phase without a chromomagnetic field. 

2. We consider a pure gauge theory with the SU(2) group in a (3 + l)-dimensional space-time. The 
Lagrangian L = —1/4F^UF^V can be rewritten in the form that demonstrates explicitly the interaction 
between a charged vector field and an "electromagnetic" field, 

L = ~\fl„ ~ \\(DA " D»%)\ 2 ~ fe/^Ф+Ф„ + - Ф ^ м ) 2 , (1) 

where the following notation is introduced: A^ = A^ is a neutral ("electromagnetic") field; Фм = -^(A* + 
iA2) is a charged field, D^ = + ieA^. 

In our problem, the "electromagnetic" field is chosen to be a constant chromomagnetic field directed 
along the axis, the gauge is antisymmetric, and a charged field may be chosen vanishing, 

Ар = (Ло,А) = (0,(0,х1В,0)), 
V ' 

Ф„ = Ф+=0 . 

This set (А, Ф) solves the field equations. However, when nonvanishing solutions of the field equations are 
found for the charged field Ф in an external chromomagnetic field A t h e y can be written in the form 
Фц = е-гЕха+гк3х3+гк2х2 fn(l[x\ - къ/еВ). The corresponding energy spectrum looks like (see, e.g., [4]) 

E2 = fcf + 2eB(n + i) ± 2eB, (3) 
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where n = 0,1,2, . . . . It is clear that the energy becomes imaginary, when the spin orientation corresponds 
to the minus sign, the quantum number n = 0 and k2 < eB (tachyonic modes). This demonstrates that 
this configuration is unstable with respect to shifts along tachyonic modes described by these energies [5]. 

The authors of [2, 3] suggest a method which allows one to reach the uniform quantum Hall state by 
going down along the unstable modes. The direction of descent is chosen to suit the requirement that the 
final solution must be spatially uniform. Only modes with k3 = 0 are chosen so that there is no dependence 
on x3. To eliminate the dependence on x2, the averaging over all possible values of k2 is required. It is 
evident that in this case the most "rigid" modes are excited. The solution is sought in the form of functions 
independent of x3, 

x 2 ) ^ 3 , (4) 
where L3 is the length of chromomagnetic field in the direction of the жз-axis. Taking into account the fact 
that the tensor of the neutral field has only one nonvanishing component / 12 , we may describe the unstable 
mode by the following Lagrangian for the scalar field <£>: 

= + (5) 

Lagrangian (5) is similar to the Higgs Lagrangian if we consider the term describing the interaction with 
the constant chromomagnetic field as a negative squared mass. The only and rather important difference is 
that the interaction with the chromomagnetic field enters also the covariant derivatives. As a result, there 
are no spatially uniform solutions of the field equations with this Lagrangian. In order to make possible 
their presence, a method similar to that used in [6] for fermions was applied in [2]. Its main idea is that we 
go over to another effective (2 + l)-dimensional model with a Chern-Simons term describing new bosons </?a, 

Left = (гд„ - + a^cpal2 + 2eB<p2a - ^<p4a + (6) 

As is known [7], the Chern-Simons term changes the statistics of particles, "attaching" to them an extra 
magnetic flux, and making it, generally speaking, fractional depending on the values of parameter a. The 
statistics is conserved only at a = 2nk, where к is an integer. In [2, 6], it is demonstrated that in this case 
the old model (5) and the new model (6) are dynamically equivalent. The field ipa describes new bosons that 
condense to the spatially uniform solution, (pa = v = const. This solution arises when the Chern-Simons 
gauge field totally compensates for the constant chromomagnetic field A^ in the covariant derivatives 
and the model becomes a pure Higgs model, a; = eA{. 

We can safely guarantee that the found solution is a true vacuum, i. е., it is also stable against pertur-
bations relatively nonuniform along the chromomagnetic field direction, only when there are no tachyonic 
modes with the momentum £3 ф 0. 

Relation (3) implies that all the modes with n = 0, s = —1/2 and k2 < eB are unstable. In order to 
exclude modes with k3 Ф 0, it is sufficient to make the extension of the field along the Жз-axis finite. In 
this case, imposing on the charged field the periodicity conditions along this axis, А^2(0) = A^2(L3), the 
discretization of the corresponding momentum follows: k3 = 2nn3/L3. In order to avoid the unstable modes 
with k3 Ф 0, we should require that the squared energy of the lowest modes with n3 = ±1 be positive, and 
this imposes a physical restriction on the maximal possible extention of the chromomagnetic field along the 
ягз-axis, 

(ifO1"* (7) 

The chromomagnetic field by itself does not break the color neutrality. However, it is broken by the 
presence of the charged field condensate. Since only white states are admissible, we come to the conclusion 
that the aforementioned state is forbidden in the pure gauge theory. According to [2], the quark field should 
be introduced as a supplier of the color charge, and this allows one to restore the color neutrality. 

3. As we have seen, the gauge configuration consisting of the constant chromomagnetic field and the 
charged uniform condensate can exist only in the presence of fermions. We will consider massless fermions 
in the fundamental representation. They are described by the Dirac equation 

= 0, (8) 
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where DM = 4- ieA^. In every gauge configuration, the Dirac equation leads to a particular energy 
spectrum. In the ground state, fermions with finite density will occupy a certain number of lower levels. 
In this way, their total energy, which is the sum of all occupied energy levels, will depend on the external 
gauge field. The restrictions are as follows: the space-time is (3 + l)-dimensional, though the extension of 
the chromomagnetic field in the x$ direction is limited by the interval (0, L3), where L3 = L™3* = 2ir/VeB, 
and the system should be neutral colored. Our aim is to investigate the system for the case of constant 
chromomagnetic fields considering the restrictions imposed on the boson sector, and to answer the question 
about the phase transition between the color ferromagnetic state (В ф 0) and color superconducting (B = 0) 
state. In other words, would it be energetically advantageous to "switch off" the chromomagnetic field 
without changing L3? 

The "Fermi energy" is defined, for the cases both with and without an external field, from the equation 

N = J 2 Q ( E f - E x ) , (9) 
л 

where Л is the set of quantum numbers for the Dirac wave functions both with and without the field. The 
total energy is defined as 

Etot = £ ®(ef(N) - EX)EX. (10) 
л 

Solutions of the free Dirac equation have the form of plane waves and are determined by the quantum 
numbers: Л = c,s,e,k\,k2,kz, where c,s,e = ±1 are the color, the spin projection, and the sign of the 
energy, E\ = k2. Considering the periodicity conditions leads to the restriction on the values of the 
momenta: ki = 2-Krii/Li, where щ are integers. 

When В ф 0, the quantum numbers and the spectrum are also well known: Л = с, s, e, n, к2,кз, 

E2x = ^B(2n+l-s) + kl 

where the effective charge is considered to be equal to e' = e/2. The periodicity condition again determines 
possible values of the momenta, and the form of the wave function limits the maximal possible value of 
and this determines the degree of degeneracy with this quantum number. 

Taking into account (7), we can write equations for both cases in a unique form: 

where / , g are dimensionless functions of a dimensionless variable, defined according to the relations 
00 

/в=0(*)= E 20(x 2 -ni ) (x 2 -n|) , 
713=—00 

00 
9B=0(x)= £ 4/3Q(x2 — n\)(xz — n|) 

П з = —OO 

in zero chromomagnetic field, and 
00 00 

fB*°(x)= J2 £ ( 2 - M e ( * 2 - " - n 2 ) , 
n 3 = - ° ° n = 0 (13) 00 00 

п з =—00 n = 0 

in the presence of a chromomagnetic field. 
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With the notation h(x) = g(f 1(2n2x)), the total energy can be written as 
r.2 D2T/-L/ P Etot = 2e2B2Vh( (eJ5)3/2 (14) 

where p = N/V = N/(L1L2L3) is the density of fermions. The energy depends on В in the case of free 
fermions because in fact it depends on finite L3 which can be written in terms of B. 

We consider the question about the energy gain due to the presence of the chromomagnetic field. It is 
obvious that due to its generation the fermion energy will change by the amount —2(eB)2VAh(p/(eB)3/2), 
where Ah = hB=0 — hB. We shall add to it the energy of the chromomagnetic field itself. Furthermore, if 
В = 0 and supposing there exists a mechanism of effective attraction, the energy could be gained due to the 
effect of color superconductivity [8] (the influence of a chromomagnetic field on the color superconductivity 
and chiral symmetry breaking effects is discussed in [9]): fermions lying near the Fermi surface create 
Cooper pairs gaining the energy У2тгр2/3А2, where Д is the coupling energy of a Cooper pair. Thus, the 
total energy change due to the presence of the chromomagnetic field is written as 

2тг р2 /3Д2 /3^ 
AE = VB2 ( -2e2Ah 

(eB)3/2 B2 (15) 

Function Ah(x) was calculated numerically and is depicted in Fig 1. It is clear that it is positive and 
undergoes frequent oscillations related to discreteness of the Landau levels. Whether a ferromagnetic phase 
is advantageous depends on how the negative term in (15), that defines the energy gain due to fermions 
changing their places from zero field levels to Landau levels, can compete with the positive terms related to 
energy losses for the chromomagnetic field production and destroying the superconductivity mechanism. 

1000 

x 
Fig. 1 

Function Ah(x). 

The competition of the first two terms is evidently reduced to the question of how large the coupling 
constant is. For instance, when the characteristic dimension L3 of the system tends to zero, the running 
coupling constant is also going to zero and production of a chromomagnetic field becomes disadvantageous. 
Hence, this indicates the lower bound for L3 and an upper bound for B. 

The relation between the first and the third terms is determined by the value of the fermion density. 
The condition that the ferromagnetic state is energetically advantageous imposes an upper bound on the 
fermion density. 
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In their subsequent studies, the authors plan to consider a more realistic model in order to make 
particular estimates of the abovementioned facts, and to be able to make a more definite answer to the 
question whether a ferromagnetic phase in the QCD vacuum exists. 
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