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INTRODUCTION

Granular media are the total of microscopic parti-
cles with the dimension from a part of a micrometer to
meters. They are widespread in nature. Powders, sand,
and gravel may serve as examples [1]. Friction in these
systems results in the appearance of a series of unusual
properties: under weak external impacts they keep their
form, in a similar manner to solids. However, under a
considerable load, fluid-like flows may arise in granular
media [2]. Thin granular systems are called granular
gases [3–7]. Astrophysical objects such as dust clouds
and planetary rings, including Saturn’s rings, are gran-
ular gases as well [5, 6].

During the collision of particles, a part of their
kinetic energy transforms into the energy of the heat
motion of molecules composing a granule [3]. The
value of this loss may be characterized by the restitu-
tion coefficient 

 

ε

 

 [3]:

Here 
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 and  are relative particle velocities before
and after a collision, respectively and 

 

e

 

 is the unit vector
connecting particle centers. For the sake of simplicity,
it is assumed that all particles are spherical.

To simplify the calculations, the restitution coeffi-
cient 

 

ε

 

 is often assumed to be a constant, not depending
on the relative velocity of the colliding granules. How-
ever, this is in contradiction with the experimental data
[9–11] and is not confirmed by the theoretical analysis
[12]. By integrating Newton equations for colliding
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viscoelastic particles with the force of their interaction
depending on the distance between their centers and the
relative particle velocities according to the viscoelastic
interaction law [3, 13], it is possible to obtain the fol-
lowing dependence of the restitution coefficient on the
relative particle velocity at the collision [3, 14]:
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the order of unity [3], 

 

δ

 

'(

 

t

 

) = 

 

δ

 

(

 

u

 

(

 

t

 

))

 

1/10

 

, 

 

u

 

(

 

t

 

) = 

 

T

 

(

 

t

 

)/

 

T

 

(0)
is the relative gas temperature, 

 

δ

 

 is a small parameter
characterizing the dissipation of the particle energy (its
dependence on the material parameters may be found in
[3]), 
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 is the dimensionless relative velocity,
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 is the mean-square velocity, 

 

m

 

 is the par-
ticle mass. The granular gas temperature 

 

T

 

(

 

t

 

) is the
mean kinetic energy of the translational motion of a
granule:

where 
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 is the gas concentration and 
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) is the veloc-
ity distribution function. Below we use its scaling form

Due to the dissipative character of the interparticle
interactions the gas relative velocity distribution func-
tion 
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) differs noticeably from the Maxwell distribu-
tion 
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) typical for common molecular
gases. If dissipation is not very large, this deviation may
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be described by the Sonine polynomial series expan-
sion [15, 16]:

(2)

It follows from the definition of temperature that the
coefficient of the first polynomial 

 

a

 

1

 

(

 

t

 

) = 0 [3]. In [17]
it was supposed that the behavior of the coefficients in
the expansion Eq. (2) follows the power dependence:

 

a

 

k

 

 ~ 
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, (3)

where 

 

λ

 

 is a small parameter, Its physical nature was
not discussed in [17]. However, in [18] it was shown
that for granular gases with a constant restitution coef-
ficient the coefficient 

 

a

 

3

 

 is comparable in its order of
magnitude with 

 

a2, which makes the hypothesis in
Eq. (3) doubtful. As noted above, the supposition that
the restitution coefficient is constant contradicts the
experimental data. Therefore the aim of the present
work is the analysis of the distribution function and
temperature of the granular gas of viscoelastic particles
with the restitution coefficient Eq. (1) and checking if
the hypothesis Eq. (3) holds for the given system. The
model of viscoelastic particles has an advantage of the
explicit dependence of the studying quantities on the
small dissipation parameter δ.

Calculation of a2 and a3 coefficients.

The Boltzmann equation for the gas velocity distri-
bution function is as follows [19]:

(4)

where I(f, f ) is the collision integral, g2(σ) is the pair
correlation function taking into account the increasing
collision frequency of particles due to its excluded vol-
ume and the corresponding spatial correlations [20] and
σ is the particle diameter. For relative velocities it is
convenient to introduce the dimensionless collision

integral ( , ) related to the conventional collision

integral I( f, f ) = σ2n2  [3] by:

where Θ(x) = 1 at x > 0 and Θ(x) = 0 at x < 0.

By introducing the momenta of the dimensionless
collision integral

and substituting the velocity distribution function Eq. (2)
into the Boltzmann equation Eq. (4), one obtains the
following system of equations [3]:
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p Ĩ f̃ f̃,( )d∫–=

Here B = (0), where we introduced

 = 4 g2(σ)σ2n  as the mean collision
time in a gas [20].

By introducing the dimensionless time τ = t/τc, mul-

tiplying both parts of Eq. (4) by  and integrating over
c1, it is easy to obtain a system of equations to find the
Sonine polynomial coefficients a2, a3 and relative tem-
perature u:
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In the system of Eqs (5), for short, the numerical
coefficients are expressed as simple fractions only in
the first two equations, with those in the following
equations expressed as decimal fractions. The analyti-
cal solution of the system of Eqs. (5) may be obtained
by the perturbation theory with the series expansion of
u(τ), a2(τ) and a3(τ) with respect to a small parameter
δ: u = u0 + δu1 + …, a2 = a20 + δa21 + …, a3 = a30 +
δa31 + …. In the zero approximation with respect to δ,
the solution of the system Eqs. (5) is as follows:

u0 τ( ) 1 τ
τ0
----+⎝ ⎠

⎛ ⎞
5
3
---–

=

where  =0.56δ, A1 and A2 are the arbitrary constants
depending on the initial conditions. In the case a20(0) = 0
and a30(0) = 0 the coefficients in the Sonine polynomial
expansion of the distribution function in the zero
approximation with respect to δ are zero in the total
time interval: a20(τ) = 0 and a30(τ) = 0.

In the first approximation,  = a20 + a21δ and  =
a30 + a31δ, and the system Eqs. (5) is as follows:

(6)

By solving the system of Eqs. (6) at τ  ∞, the fol-
lowing asymptotic expressions for the relative temper-
ature u(τ) and coefficients a2(τ) and a3(τ) in the linear
approximation with respect to δ:

(7)
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may be obtained.
The second Eq. (8) and third Eq. (9) coefficients

have the same asymptotic time dependence and the
same order of smallness with respect to the dissipation
parameter δ. Thus, the hypothesis given in [17], does
not hold. The ratio of coefficients obtained in the

asymptotic limit τ  ∞ for small δ is /  ≈ 0.18. It
exceeds noticeably the conventional error of the theory
of the homogeneous cooling of the granular gas of par-
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Fig. 1. Second coefficient in the Sonine polynomial expan-
sion of the velocity distribution function a2(τ) at δ = 0.01,
0.03, and 0.05.
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Fig. 2. Third coefficient in the Sonine polynomial expan-
sion of the velocity distribution function a3(τ) at δ = 0.01,
0.03, and 0.05.
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ticles with the constant cooling coefficient (not taking
into account a3), which agrees with the computer simu-
lation results with the accuracy of 2–3% [3, 21]. Thus,
the third coefficient should be taken into account as
well. At large δ when the linear approximation is vio-
lated, the ratio of the second coefficient to the third
coefficient may increase [18]. The exact solution of the
system Eq. (5) was obtained numerically at different
values of the small dissipation parameter δ. It was sup-
posed that at the initial time moment the system (5)
obeys the Maxwell distribution, i.e., a2(0) = (0) and
a3(0) = 0. The time dependences of the second and third
coefficients in the Sonine polynomial expansion a2(τ)
and a3(τ) are given in Figs. 1 and 2. Figures show that
initially a2(τ) and a3(τ) are negative and decrease with
time reaching their minimum. The larger the parameter
δ, the larger the value of |a2(τ)| and |a3(τ)|. Then they
increase tending to zero at τ  ∞. Thus, the velocity
distribution function tends to the Maxwell distribution.
It should be noted that at very large times the behavior
of the system becomes dramatically different because
clusters and vortices are formed [3]. In the present
paper we consider only the initial stage of the gas evo-
lution called the “homogeneous cooling state” and sup-
pose that the system remains in this regime. Figure 3
shows the comparison of the moduli of the second and
third coefficients in the Sonine polynomial expansion
of the velocity distribution function |a2(τ)| and |a3(τ)|
obtained by the numerical solution of the system Eqs. (5)
at sufficiently small value of the parameter δ = 0.001

and moduli of the analytical solutions | (τ)| Eq. (8)

and | (τ)| Eq. (9) obtained in the linear approximation

with respect to δ at τ  ∞. The asymptotics | (τ)|

a2
1

a3
1

a2
1

and | (τ)| agree well with the numerical values at τ >
10000. The τ dependence of the relative temperature u
is shown in Fig. 4. The larger the parameter δ character-
izing the dissipation, the lower the temperature and the
higher the cooling velocity. The asymptotic u1 obtained
in the linear approximation with respect to δ at τ  ∞
(Eq. (7) is shown with dashed lines in Fig. 4. It agrees
well with the exact solution u(τ) after some time. The
smaller δ is, the larger this time value becomes.

CONCLUSION

In the present work the evolution of the granular
temperature and the velocity distribution function was
investigated in the framework of the model of a granu-
lar gas of viscoelastic particles (with velocity-depen-
dent restitution coefficients). This model is most close
to reality. To calculate the velocity distribution func-
tion, the Sonine orthogonal polynomial expansion was
used and the second and third coefficients of this expan-
sion were obtained. It is interesting to note that the
velocity distribution function relaxes to the Maxwell
distribution at the same time scale as that for the change
of the gas temperature itself. This is what radically dif-
ferentiates the evolution of a gas of viscoelastic parti-
cles from that of a granular gas with a constant restitu-
tion coefficient, in which the distribution scaling func-
tion relaxes to the stationary state during a period on the
order of several collisions but the characteristic time of
gas cooling may be much longer [3, 21]. The third coef-
ficient is of the same order of smallness with respect to
the dissipation parameter as the second coefficient.
Thus, it is necessary to take it into account for the ade-
quate description of a granular gas.
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Sonine polynomial expansion of the velocity distribution
function |a2(τ)| and |a3(τ)| at δ = 0.001 and their linear
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Fig. 4. Relative temperature u(τ) at δ = 0.01 and 0.05. Dot-
ted line follows the asymptotic |u1(τ)| at τ  ∞ Eq. (7).
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